

Quantification of Energy Efficiency in the Utilities of the U.S. Affiliate States (Excluding US Virgin Islands)

Data Handbook

Pacific Power Association.

Prepared for Pohnpei Utilities Corporation.

December 23, 2010 - Final

Copyright © 2010, Pacific Power Association

The information contained in this document is the exclusive, confidential and proprietary property of the Pac ific Power Association and is protected under the trade secret and copyright laws of Fiji and other international laws, treaties and conventions. No part of this work may be disclosed to any third party or used, reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage or retrieval system, without first receiving the express written permission of Pacific Power Association. Except as otherwise noted, all trademarks appearing herein are proprietary to the Pacific Power Association.

Table of Contents

1.	Intro	duction	2
2.	Data	Content	2
	2.1	Generator	2
	2.2	Station Transformer	. 4
	2.3	Distribution Feeder	6
		2.3.1 Feeder	6
		2.3.2 Distribution Transformer	7
	2.4	Generator and Feeder Output Meters	8
	2.5	Circuit Breaker and Sw itches	8
	2.6	Reactor and Capacitor	10
No .	Apper	ndix for this document	. 1
Lict	of E	khibits:	
LIS	. OI L.	Ambits.	
Tab	le 1 –	Generators	3
Tab	le 2 –	Station Transformers	. 4
Tab	le 3 –	Feeders	6
Tab	le 4 –	Transformer count and kVA capacity sum	. 7
Tab	le 5 –	Meters	8
Tab	le 6 –	· HV Circuit Breakers (VCBS and OCBS)	8
Tab	le 7 –	Pad Mount Switches	. 9
Tab	le 8 –	· Capacitor Data	10
Tah	le 9 _	Future Reactor Data	10

1. Introduction

KEMA Inc has been awarded by the Pacific Pow er Association (PPA) in Fiji to carry out a project called "Quantification of Energy Efficiency in the Utilities of the U.S. Affiliate States (Excluding US Virgin Islands)".

In this report, an Electrical Data Handbook contains all the electrical characteristics of the power system high voltage equipment in Pohnpei Utilities Corporation (PUC) is provided. All relevant data of the high and medium voltage assets, such as generation data, impedances of lines, cables, transformers, and other equipments if exists. KEMA has incorporated major data of components and equipment in power generation, transmission, distribution and metering. Data template is established to hold comprehensive equipment data, for example for transformers data collected power ratings, primary and secondary voltages, load and no load losses, tap changer data, BIL ratings, cooling class, applicable standards, weight, etc.

2. Data Content

All data contents are identified based on the information KEMA received.

2.1 Generators

There are 7 generators in the Nanpohnmal Power station and 2 hydro units in the Nanpil power station of PUC. However, 2 hydro units are out of service since they have been damaged by a flooding in 2002. The Pohnpei government is currently working on having the 2 hydro units repaired.

Table 1 - Generators

DUO	Substation			ı	NANPOHNMA	L			NAN	NPIL
PUC	Engine #	4	5	6	7	8	9	10	Hydro #1	Hydro #2
	ENGINE MAKE		CATERPILLAF	₹		DAIH	ATSU		BOVING	G & CO.
GENERATOR DETAILS	ENGINE MODEL	3516 STD	3516 STD	3516 STD	12DS32	12DS32	12DS32	12DS32		
	ENGINE SERIAL NUMBER	73Z00310	73Z00309	73Z00312						
OR D	NAME PLATE RATING (kW)	1,135	1,135	1,135	2,500	2,500	2,500	2,500	650	1,152
RAT	DE-RATED (kW)	800	800	800	1800	1,800	1,800	1,800		
GENE	SPEED (RPM)	1200	1200	1200	600	600	600	600	1200	900
	FUEL TYPE				Diesel			Francis Turbine		
	YEAR INSTALLED									
AILS	MAKE		KATO			NISHI	SHIBA		KA	ТО
DETAILS	TYPE	Brushless	Brushless	Brushless	Brushless	Brushless	Brushless	Brushless	Brushless	Brushless
TOR	MODEL NO.	A248880000			NTAKL	NTAKL	NTAKL	NTAKL	A237830000	A237840000
ALTERNATOR	SERIAL NO.	123425							93289	93290
ALTI	VOLTAGE (V)	4,160	4,160	4,160					277/480	277/480
REMARKS		Overdue for 12,000 hours service								

2.2 Station Transformers

Three substation step-up transformers are operated in the Napohnmal power substation to transfer power from the 4.16 kV generator bus to the 13.8 kV substation bus. No Load and Full Load losses and Z1, Z0 impedances are as specified in PUC Data Outstanding.docx . PUC shall update the data with specific values provided by the transformer manufacture r.

Table 2 – Station Transformers

	Substatio	on Name	NAPOHNM AL			
PUC	Transform	ner Make	VANTRAN	AICHI	TAKAOKA	
PUC	Seria	NO.	89V5850	9122548	9348096	
	Year of Ma	nufacture		1992	1993	
	Rating	(MVA)	5	6.3	6.3	
S	NO. of F	Phases	3	3	3	
ISTIC	Vector	Group	YNd1	Yd1	YNd1	
ELECTRICAL CHARACTERISTICS	Voltage (V)	High	13800/7970	13800	13800	
RAC-		Low	4160	4160	4160	
НАБ	Impedance (%)	Z1	5.75	5.68	5.58	
AL C		Z0				
RIC/	Losses (Watts)	No Load	8800 ¹	10000	9000	
ЕСТІ		Full Load	42125 ²	42000	42500	
E		HV	220.9	264	204	
	Max. Current (A)	LV	693.9	874	874	
	Oil	Vol (Gals)	900	740	925	
TANK, CORE &	Oii	Weight (Lbs)		15211	14110	
OIL DETAILS		Net	29000	30424	31306	
DET AILS	WEIGHT (LBS)	Core, Coil & TC		15213	17196	
TAPS &	NO. of	Taps	5	5	5	

¹ Typical data from Electric Power Distribution System Engineering, by Turan Gonen

² Typical data from Elect ric Power Distribution System Engineering, by Turan Gonen

TC DETAILS	Tapchanger Type	NLTC	NLTC	NLTC
COOLING METHOD		ONAN	ONAN	ONAN
REMARKS		CAT 4, 5, and 6	Engine 7 & 8	Engine 9 & 10

2.3 Distribution Feeders

2.3.1 Feeders

There are 4 main distribution feeders in the PUC system. Majority of the feeders are 13.8 kV overhead lines, with the exception of a section of underground cable. The feeder data template is provided in the table below with a summary of feeder i nformation as represented in the Easy Power model. PUC should add or update with additional data in the future.

Table 3 – Feeders

NAME	Kolonia	Western	Eastern #1	Eastern #2
CONDUCTOR PER PH ASE	3	3	3	
MATERIAL	Aluminum	Alum inum	Aluminum	
SIZE	336.4 MCM	336.4 MCM	336.4 MCM	
LENGTH	31,199 ft	190,088 ft	139,375 ft	
TEMP (C)	75	75	75	
EARTH RESISTANCE				
GMD (f)	3.4	3.4	3.4	
AVERAGE HEIGHT (ft)	45	45	45	
R1 (Ohms/mile)	0.332	0.332	0.332	
X1 (Ohms/mile)	0.617	0.617	0.617	
R0 (Ohms/mile)	0.617	0.617	0.617	
X0 (Ohms/mile)	3.0597	3.0597	3.0597	
Xc (MOhm-mile)	0.146	0.146	0.146	
Xc0 (MOhm-mile)	0.434	0.434	0.434	
RATING Amps	530	530	530	
REMARKS				

2.3.2 Distribution Transformers

Distribution transformers are counted from Excel file *Feeders_Sorted.xlsx* obtained from PUC. Distribution transformers are listed in the tables below:

Table 4 - Transformer count and kVA capacity sum

PUC	lm	pedan	се	Losses (watts)		Number of Transformers	Total kVA Installed
kVA	Z%	R%	X%	No Load	Full Load		
5	2.2	2.1	0.8	41	144	12	60
10	1.8	1.4	1.2	68	204	102	1020
15	1.7	1.3	1.2	84	282	158	2370
25	1.7	1.2	1.2	118	422	70	1750
37.5	1.7	1.1	1.3	166	570	36	1350
50	1.8	1.1	1.4	185	720	27	1350
75	1.7	0.9	1.4	285	985	16	1200
100	1.9	1.9	1.7	355	1275	5	500
200	2.4	1.1	2.2	544	2653	1	200
			Total	1	427	9800	

Z%, R%, X%, No Load and Full Load Losses are typical value s for transformer in the same class of voltage and k VA capacity. PUC shall update the data with specific values provided by the transformer manufacture rs. ³

³ Reference: Electric Power Distribution System Engineering, Turan Gonen

2.4 Generator and Feeder Output Meters

Details of generator and feeder output meters are listed below.

Table 5 - Meters

Generator and Feeder Output Meters	Generators #4, 5 and 6	Generators #7, #8, #9 and #10	Feeder Kolonia, Western and Eastern #1	Eastern #2 Feeder
Make	Email Meters	Toshiba Corporation	Toshiba Corporation	GE
Type	SDM	S73-VR	S73-K9VR	EPM
Phase	3-phase	3-phase	3-phase	3 phase
Wires	3 wire	3 wire	3 wire	
Voltage (V)	4160/120	4160/110	4160/115	
Revs/kWh	0.444	2363	2400	
CT Ratio	300/5A	300/5A	600/5A	

2.5 Circuit Breakers and Switches

There is no circuit breaker data or switch data provided for the PUC system.

The table below is provided as a template for future data capture.

Table 6 – HV Circuit Breakers (VCBS and OCBS)

Location	Туре	Voltage Rating	Quantity
Total			

Table 7 - Pad Mount Switches

Location	Voltage Rating	Quantity
Total		

2.6 Reactor and Capacitor

There are three capacitors with on e mounted on the Eastern feeder and two on the Kolonia 2 feeder. All three are rated at 15 kVA r.

The table below shows capacitor data.

Table 8 - Capacitor Data

Location	Voltage Rating	MVAr	Quantity
Eastern	13.8	0.015	1
Kolonia	13.8	0.015	2
Total		0.03	3

There is no reactor in the PUC system.

The table below is provided as a template for future reactor data.

Table 9 - Future Reactor Data

Location	Voltage Rating	IMPEDANCE	Quantity
		_	
Total			

Appendices

No Appendix for this document.