# **Smart grids for the Pacific:**

Evolution, innovation and future resilience



www.utilligence.co

www.pacificislandrenewables.com





### How it's been: The power grid we all know and understand



## Grid technology evolution

| ERA           | GRID TYPE              | KEY FEATURE                                                                                                                            |
|---------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 1920s -1960s  | Electromechanical grid | Centralised system  Manual control  One-way power flow                                                                                 |
| 1970s – 1990s | SCADA-Enabled grid     | Remote monitoring Digital relay Semi-automated system                                                                                  |
| 2000s – 2020s | Smart grid             | Decentralised system Two-way communication Renewables integration Real time pricing Demand response Excess energy arbitrage and resale |
| 2030s         | Al grid                | Autonomous Fully automated dispatch Self-healing Predictive maintenance Load forecasting                                               |
|               |                        | Pacific                                                                                                                                |

Renewables

### Conventional grid power systems

An interconnected network that generates, transmits, distributes, and delivers electricity from generators to consumers.

Three primary components:

- Generation
- Transmission
- Distribution



### The European smart grid architecture model



#### Component layer:

Physical distribution of all participating components including power system



#### **Communication layer:**

Communication protocols and mechanisms for information exchange



#### **Information layer:**

Information objects being exchanged + underlying canonical data models



#### **Function layer:**

Describes services & their relationships from an architectural viewpoint



### **Business layer**: A business view on the

information exchange related to smart grids



### Today's modern smart grid

- Two-way power and data flow
- Advanced metering infrastructure, providing real-time data for dynamic pricing
- Distributed renewable energy resources at scale
- Self-healing automation: All and IoT instantly detect & isolate faults
- Microgrids: Localised grids operate independently during outages
- Al and big data analytics
  - Predictive maintenance
    - Monitor equipment health
    - Prevent failures before they occur
  - Load forecasting
  - Energy optimisation



#### Why we need smart grids in the Pacific

Meet climate goals

Support renewable energy integration for net zero emission

Reliability

Reduce grid outages Improve resilience

**Empower customers** 

Enable them to manage their energy use and costs

Lower operational cost

Automation reduces manual interventions Reduce maintenance expenses

Efficiency

Minimize electrical energy waste by real-time adjustments

Reduce energy theft

Advance monitoring detect unauthorised usage

Job creation

Drive innovation in green tech
Al-driven grid management & cybersecurity



### The Pacific Islands' power experience to date

- A predominately diesel power grid
- Unidirectional power flow
- No automated grid control
- Poor grid power quality
- No automatic load forecasting
- No network digitalisation
  - Without network modelling, you cannot:
    - Assess new connection points
    - Forecast/understand network weak points and make improvements/reinforcements
    - Produce an outage management scheme



#### The Pacific future: Network digitalization

- 1. Build a realistic software model of the grid
- 2. Install power quality meters around the network
  - Collected detailed network data (voltage, current, harmonics, network impedance etc.)
  - Assess the data and model outputs
- = An understanding of the impact of renewable energy on the existing grid
  - Integration of renewable energy to a weak grid is challenging; modelling means you can mitigate the impact

# Mitigation strategies are different for every island and local grid, but the following allow for successful integration:

- Grid forming inverters
- Grid scale batteries
- Moden protection control systems, including smart sensors



#### **About us: Part of the Utilligence Group**

- Pacific Island Renewables builds upon the successful model established by Palau Solar, harnessing our expertise in solar, wind and smart grid technologies
- A regional hub, providing comprehensive engineering, procurement and construction services for commercial renewable energy projects in island nations throughout the Pacific
- Fostering strong local partnerships and developing a skilled local workforce, so that the benefits of renewable energy deployment are accrued by the local communities, building long-term sustainability and self-reliance
- Tailored energy solutions for the unique infrastructure challenges faced by Pacific island countries. This includes grid modernisation and storage crucial in supporting the transition to low-carbon, resilient power systems
- Partnering with local communities, sharing global expertise and delivering bespoke energy solutions is driving forward the region's transition to a more sustainable, resilient, and self-sufficient energy future

#### Conclusion:

Smart grid technologies play a pivotal role in the Pacific's modern power systems. These will enhance:

- Grid performance
- Reliability
- Efficiency
- Sustainability
- Island grids will evolve from dumb wires, to smart ecosystems that can fully support and optimize the advantages of renewable power



### Questions?

#### Come and see us at table 22.



www.utilligence.co

www.pacificislandrenewables.com



