Revenue Protection via Meter Site Analysis

Marcus Zickefoose

Why Do We Test?

Legal Ramifications
Regulatory Bodies
Utility Best Practices
We've Always Done It
We've Never Done It

- Energy is consumed.
- Payment is exchanged.
- Is it a fair exchange?

Legal & Regulatory

 To ensure that a meter is meeting the accuracy requirements mandated by the PSC and management, we test it in the shop under conditions recommended by ANSI C12.1 (absorbed C12.20 in 2022) and the metering manufacturer.

- Generally, for a Class 20 CT Rated meter this means testing:
 - Full Load...120V, 2.5A, PF=1
 - Light Load...120V, 0.25A, PF=1
 - Power Factor...120V, 2.5A, PF=.5

Financial Transaction

If the meter is functioning accurately, what does that say about whether or not the customer is getting the correct bill?

POSSIBLY NOT MUCH!

With a History Lesson

Nuclear Arms Treaty 1987 Russian proverb "doveryai, no proveryai"

Extensive verification procedures that would enable both sides to monitor compliance with the treaty.

In our world, the customer and the utility TRUST that payment for watthour consumption is accurate. Both the utility and the customer may have to VERIFY their trust in the transaction.

How Does a Customer Verify Their Trust in the <u>Transaction</u>?

High Bill Complaint

Verify With:

Meter Test

How Does a Utility Verify Their Trust in the <u>Customer</u>?

Theft Detection

AMI or Billing Flags

Distributed Intelligence

Verify With:
Meter Test, Visual
Inspection,
Complete Site Analysis

How Does a Utility Verify Their Trust in the <u>Transaction</u>?

Meter Site Circuit Analysis

Verify With:
Vector Analysis
Meter Test
CT Test
"Billing Analysis"

The Utility is Also a Customer!

Meter Manufacturers
CT and PT Manufacturers
Software Providers

Verify With:
Sample Testing
Acceptance Testing
New AMI Software Version
Validation

The Utility is Also a Customer!

- Single Position Test Boards
- Multi Position Test Boards
- Meter Qualification Boards
- Warm-Up Boards
- Desktop Meter Stations
- Meter Farms
- Lab Calibration Systems

Types of Errors & Ramifications

Self-Contained Errors

Meter
Wiring
(socket)
Administrative
Theft

Consider a Typical Transformer Rated Metering Site

Wiring errors, meter errors, CT errors, PT errors, administrative errors and theft can all lead to lost revenue, decrease in customer confidence, and even lawsuits.

Transformer Rated Sites

How much revenue is my utility losing through site errors?

80/20 Rule Revenue vs Sites 2-5% Have Error

Transformer Rated Sites

AVERAGE \$30k Loss per Error

Type & Scope of Error

- Trickle: Couple Percent
- Stream: 10...20...30%
- River: 50...60...70%
- Tsunami: Nearing 100% Loss

Duration

- 90 Days
- Years
- Decades

Size of Site

- Large
 Residential
- SmallCommercial
- Large
 Industrial

Meter

Wiring (socket)

Wiring (CT primary)

Wiring (CT secondary)

Wiring (length & gauge)

Wiring (test switch top)

Wiring (test switch bottom)

CT

CT application

Administrative

Theft

Meter

Wiring (socket)

Wiring (CT primary)

Wiring (CT secondary)

Wiring (length & gauge)

Wiring (test switch top)

Wiring (test switch bottom)

CT

CT application

Administrative

Theft

Meter

Wiring (socket)

Wiring (CT primary)

Wiring (CT secondary)

Wiring (length & gauge)

Wiring (test switch top)

Wiring (test switch bottom)

CT

CT application

AdministrativeTheft

- Phase Relationships
- Negative Power & Energy
- Zero Power & Energy

- Watts = V*I*PF
- Power Factor = Cos(Θ°)
- Power Factor -1.0 to +1.0
- Watts -1.0 to +1.0 Multiplier of VA

- Phase Relationships
- Negative Power
- Zero Power

- What is Θ ?
- What is PF?
- PF = +1.0
- Watts are 100% of VA
- Watts are Positive (+)

- Phase Relationships
- Negative Power
- Zero Power

- What is Θ ?
- What is PF?
- PF = -1.0
- Watts are 100% of VA
- Watts are Negative (-)

- Phase Relationships
- Negative Power
- Zero Power

- What is Θ ?
- What is PF?
- PF = -0.5
- Watts are 50% of VA
- Watts are Negative (-)

Could This Very Normal Looking Vector Be the Biggest Cause of Revenue Loss? It Depends on How You Define "Loss".

Let's Get Your Opinion Later...

Visual Inspections

Visual Inspections Might be Difficult or Nearly Impossible

- Meters Hide Socket
 Connections
- Dirty Wires Make Phasing & Polarity Hard to Determine

Visual Inspections Might be Difficult or Nearly Impossible

- Meter Hides Socket
 Connections
- Dirty Wires Make Phasing & Polarity Hard to Determine
- Difficult to Trace Wires from CT Cabinet to Meter
- Hard to See CT Nameplate,
 Polarity Marks/Primary
 Phases

Visual Inspections Might be Difficult or Nearly Impossible

- Meter Hides Socket
 Connections
- Dirty Wires Make Phasing & Polarity Hard to Determine
- Difficult to Trace Wires from CT Cabinet to Meter
- Hard to See CT Nameplate,
 Polarity Marks/Primary
 Phases

Types of Tests Available

Meter Testing

- Customer Load
- Phantom Load

CT Testing

- Ratio Amp. & Phase
- Burden
- Admittance

Wiring Verification

Vectors, Waveforms,
 Power & Energy Metrics

Customer Load Testing

Actual Billing Conditions

- Incorrect Wiring
- Harmonics
- Varying Loads
- Imbalanced Loads
- Non-Linear Loads
- Extreme Temps
- Loose Connections
- UV, Saltwater Degradation

100% Employee Owned radianresearch.com

Test Switch Connections

Customer Load Testing

Customer Load Testing

Secondary Voltage Connections Attach Alligator Clips

Can Use Bottom Side or Top Side of Test Switch

Test Switch Stays Closed

Customer Load Testing

Secondary Current
Connections
Normal Current Flow

- Current Flows from X1
- Current Flows thru Meter
- Current Returns to Neutral

How Do We Get in Series with the Secondary Current to Measure it Accurately & Safely?

Customer Load Testing

Secondary Current
Connections
Engage Shunts on Test Switch

- Safely Shorts Secondary Current of CT to Neutral
- Generally, on Polarity Side of CT Secondary

Secondary Current Connections

- Allows for Insertion of Duckbill Probe
- Generally, on Return Side of CT Secondary

Customer Load Testing Secondary Current Connections

Engage Shunts on Test Switch

Open Returns on Test Switch Insert Duckbill Probes

Polarity Sensitive

Secondary Current Connections

Engage Shunts on Test Switch

Open Returns on Test Switch

Insert Duckbill Probes
Disengage Shunts on Test
Switch

Re-Establishes Current Path

Secondary Current Connections

Engage Shunts on Test Switch

Open Returns on Test Switch

Insert Duckbill Probes

Disengage Shunts

100% Employee Owned radianresearch.com

Customer Load Testing Secondary Connections

Meter and Test Equipment

- Same Voltages
- Same Currents
- Same Phase Angles
- Same Power & Energy
- Same Harmonics
- * If No Wiring Errors!

100% Employee Owned radianresearch.com

Primary Current Connections

Many Types of Probes

- Polarity Sensitive
- Rogowski Coils (Flex Probes)
- Large Diameter Clamps
- High Voltage Current Probes
 - Overhead or HV on Hotstick
 - Safe Distance Requirements

Customer Load Testing Vector and RMS Values

Vector and Waveforms

Vector and Customer Load Meter Test

CT Ratio with Added Burden

Test Switch Connections

Phantom Load Testing

Phantom Load Testing

Phantom Load Meter Testing

- ANSI FL, PF, LL
- Sinusoidal Voltage, Current
- New ANSI Harmonics
- Full 4 Quadrant Testing
- Element Testing
- Wh, VARh, VAh, A²h, etc.
- Testing through Test Switch
 Uses Installed Wiring and
 Connections (Billing)

Applicable for True Three Phase Voltage and Current Source

Phantom Load Testing

Phantom Load Meter Testing

- Open Voltage Blades on Test Switch
- Engage Current Shunts on Test Switch and DO NOT RE-ENGAGE
- Open Current Returns on Test Switch
- Insert Duckbills
- Install Current Jumpers

Phantom Load Testing

Phantom Load Meter Testing

- Open Voltage Blades
- Engage Current Shunts
- Open Returns
- Insert Duckbills
- Install Current Jumpers-Or

Use Isolators and Source Directly to Top of Switch

Phantom Load

Revenue Loss Examples

Industrial Account \$15,000 Monthly \$180,000 Yearly 9S 3P4WY

Examples of
Possible Errors and
Actual Revenue
Loss

What is the Problem?

Phase C Secondary Current Wiring on Bottom of Test **Switch**

What PF Does the Meter See?

Equates to 2/3 LOSS

\$120k Yearly Loss

How can you find the error?

- Vector Diagram
- X Customer Load Meter Test
- X Phantom Load Meter Test
- X Through Test Switch
- X Remove Meter from Socket
- CT Ratio Test
- X CT Burden Test

What is the Problem?

Phase A Primary Current Polarity Wiring Error

What is the Estimated Loss?

What PF Does the Meter See?

Equates to 2/3 LOSS

\$120k Yearly Loss

How can you find the error?

- Vector Diagram
 Customer Load Meter Test
 Phantom Load Meter Test
 - Through Test Switch
 - Remove Meter from Socket
- CT Ratio Test
 CT Burden Test

What is the Problem?

Phase A & C Cross Phase
Wiring Error at Bottom of Test
Switch

What is the Estimated Loss?

What PF Does the Meter See?

Equates to Total LOSS

\$180k Yearly Loss

How can you find the error?

- Vector Diagram
- Customer Load Meter Test
 Phantom Load Meter Test
 - Through Test Switch
 - Remove Meter from Socket
- CT Ratio Test
 CT Burden Test

What is the Problem?

Phase C Secondary Current Polarity Tied to Neutral at Bottom of Test Switch

What is the Estimated Loss?

What Does the Meter See?

Equates to 1/3 LOSS

\$60k Yearly Loss

How can you find the error?

- Vector Diagram
 Customer Load Meter Test
 Phantom Load Meter Test
 - Through Test Switch
 - Remove Meter from Socket
- CT Ratio Test
 CT Burden Test

What is the Problem?

Phase B Current Polarity Wiring Error at Top of Test Switch

What is the Estimated Loss?

What PF Does the Meter See?

Equates to 2/3 LOSS

\$120k Yearly Loss

How can you find the error?

Vector Diagram

- Customer Load Meter Test
- Phantom Load Meter Test
 - Through Test Switch
 - Remove Meter from Socket

CT Ratio Test

CT Burden Test

What is the Problem?

Phase C Voltage not Connected at Socket (or insulation not stripped correctly)

What Does the Meter See?

Equates to 1/3 LOSS

\$60k Yearly Loss

How can you find the error?

Vector Diagram

- Customer Load Meter Test
 Phantom Load Meter Test
 - Through Test Switch
 - Remove Meter from Socket

CT Ratio Test CT Burden Test

What is the Problem?

Phase A & B Current Swap at Meter Socket (maybe prewired)

What PF Does the Meter See?

Equates to Total LOSS

\$180k Yearly Loss

How can you find the error?

- Vector Diagram
- Customer Load Meter Test
- Phantom Load Meter Test
 - Through Test Switch
 - Remove Meter from Socket
- CT Ratio Test
 CT Burden Test

What is the Problem?

\$15,000 Loss per Year

Customer Load Meter Test

• 100%

Phantom Load Meter Test

• 100%

\$15,000 Loss per Year

CT Ratio Test Phase A

• 240A(p) 1.5A(s) 800:5

Phase B

• 256A(p) 1.6A(s) 800:5

Phase C

• 256A(p) 1.2A(s) 1067:5

What is the Problem?

\$58,500 Overbill per Year

Customer Load Meter Test

• 100%

Phantom Load Meter Test

• 100%

\$58,500 Overbill per Year

CT Ratio Test Phase A

• 592A(p) 7.4A(s) 400:5

Phase B

560A(p) 3.5A(s) 800:5

Phase C

• 672A(p) 4.2A(s) 800:5

\$58,500 Overbill per Year

What is the Problem?

\$162,000 Loss per Year

Customer Load Meter Test

• 100%

Phantom Load Meter Test

• 100%

\$162,000 Loss per Year

Vector Diagram OK CT Ratio Test OK No Signs of Theft

Billing System Multiplier

16 instead of 160

CT Specs - Amplitude & Phase

CT Accuracy Class

0.3% Accuracy Class

RF=1

B 1.8

Load Affects Accuracy No Spec Below 10% Saturation on High **End**

CT Accuracy Class Graph vs Secondary Current

Where do we operate A LOT of the time?

phase

CT Accuracy Class

CT Phase Error

- Angle Between
 Primary and Sec
 Current
- IEEE C57.13 Plot Shows Amplitude & Phase

CT Accuracy Class

Phase Error Degrees

Class 0.3

- 1/4° RL to RF
- 1/2° 10% RL to RL

Class 0.15

- 1/8° RL to RF
- 1/4° 5% RL to RL

Class 0.15S

• 1/8° 5% RL to RF

Class 0.15 Ext

• 1/8° 1% RL to RF

100% Employee Owned radianresearch.com

Errors When There are NO Errors Can Still Cause Revenue Loss What Solutions Can We Utilize?

- Emphasize Sizing CTs Correctly
- Re-Evaluate Installed CTs when Customer Changes
- Use Rating Factors to Our Advantage
- Control Burden (Wire Length, Gauge, Connections)
- Utilize High Accuracy & Extended Range CTs
- Implement Field CT Testing Program

Vectors – Watts, VA, PF

Remember This Question From Earlier?

Could This Very Normal Looking Vector Be the Biggest Cause of Revenue Loss?

It Depends on How You Define "Revenue Loss".

\$180k per Year (Watthours) 100% Efficient Resistive Load VA=V*I

- Utility Provides
- Customer Consumes

W=V*I*PF

How Customer is Billed

\$180k per Year (Watthours)

Inductive Load
Current Lagging Voltage by
10°

 $PF = Cos(10^{\circ})$

PF = .985

\$180k per Year (Watthours)

PF = .985 98.5% Efficient or 1.5% Inefficient

Utility Provides VA (PF = 1) \$182,736 per Year (VAhours)

\$180k per Year (Watthours)

\$182,736 per Year (VAhours)

\$2,736 Loss per Year

- Inductive Load
- Lowers Power Factor
- Adds VAR Content

\$180k per Year (Watthours)

ANSI C12.20 PF Test is 60° Lag

Power Factor 40° Lag = .766

23.4% Loss \$55k Loss per Year

Options for the Utility?

- VAR Penalty
- VARh Billing Instead of Wh

Options for the Customer?

- Capacitor Bank Install
 - Counteracts Inductive Load
 - Improves Power Factor

Transformer Rated Sites

How much revenue is my utility losing through site errors?

80/20 Rule Revenue vs Sites 2-5% Have Error

100% of Sites Have Power Factor ≠ 1

\$30k Loss per Error

Field Test Equipment

\$10k-\$50K

QUESTIONS

