

Pacific Power Utilities

Benchmarking Report

2022 Fiscal Year

This report is a publication of the Pacific Power Association (PPA).

Technical assistance and support for the development of the benchmarking system, PRISM (Pacific Regional Infrastructure & System Metrics), was provided by DHInfrastructure with funding from the Asian Development Bank (ADB) through the project "Development of a regional information sharing network to support energy State-Owned Enterprises (SOEs) in the Pacific Developing Member Countries (DMCs)". DHInfrastructure prepared this summary report with input data provided by the participating Pacific Power Association utility members under the guidance of, and with overall support from the Pacific Power Association Secretariat based in Suva, Fiji.

The views expressed in this report are those of the authors and do not necessarily reflect the views and policies of PPA or its Board of Governors, and the governments they represent. None of the above parties guarantees the accuracy of the data included in this publication or accepts responsibility for any consequence of its use. The use of information contained in this report is encouraged with appropriate acknowledgement. The report may only be reproduced with the permission of the PPA Secretariat.

More information on this report can be obtained from:

Pacific Power Association Naibati House Goodenough Street Suva, Fiji

Tel: +679 3306 022 Email: ppa@ppa.org.fj

Website: https://www.ppa.org.fj

Pacific Power

Benchmarking Summary Report

Fiscal Year 2022

Prepared by Pacific Power Association September 2025

Table of Contents

Contents

1.	Introducti	on	1
	1.1 Ber	nchmarking Overview	2
2.	Governar	nce	4
	2.1	Quality Standards and Regulatory Structure	4
	2.2	Governance Assessment	4
3.	Gender		7
4.	KPI Resu	ılts	9
	4.1	Introduction	9
	4.2	Generation	10
	4.2.1	Load Factor	10
	4.2.2	Capacity Factor	11
	4.2.3	Availability Factor	14
	4.2.4	Generation Labour Productivity	16
	4.2.5	Specific Fuel Consumption DFO (kWh/Litre)	16
	4.2.6	Specific Lubricating Oil Consumption	17
	4.2.7	Forced Outage	18
	4.2.8	Planned Outage	19
	4.2.9	Generation Operations and Maintenance (O&M) Costs	20
	4.2.1	Power Station Usage / Station Auxiliaries	21
	4.2.1	1 IPP Generation	22
	4.2.1	Renewable Energy to Grid	22
	4.4	Transmission Indicators	24
	4.4.1	Transmission (General)	24
	4.5	Distribution Indicators	25
	4.5.1	Network Delivery Losses	25
	4.5.2	Distribution Transformer Utilization	26
	4.5.3	Distribution Reliability	27
	4.5.4	Customers per Distribution Employee	27
	4.5.5	Distribution O&M Expenses	28
	4.6	SAIDI and SAIFI	30
	4.6.1	System Average Interruption Duration Index (SAIDI)	30
	4.6.2	System Average Interruption Frequency Index (SAIFI)	31
	4.7	Financial Indicators	33
	4.7.1	Tariff Impact	33
	4.7.2	Utility Cost Breakdown	38

	4.7.3	Debt-to-Equity Ratio	39
	4.7.4	Return on Assets	40
	4.7.5	Return on Equity	40
	4.7.6	Current Ratio	41
	4.7.7	Operating Ratio	42
	4.7.8	Operating Cost Recovery	43
	4.7.9	Debtor Days	44
	4.7.10	EBITDA Margin	45
	4.7.11	EBIT Margin	46
	4.7.12	Profit Margin	47
	4.8 H	luman Resources & Safety Indicators	49
	4.8.1	Lost Time Injury Duration Rate	49
	4.8.2	Lost Time Injury Frequency Rate	50
	4.8.3	Overall Labour Productivity	51
5.	Findings an	nd Recommended Priorities	53
	5.2.1	Findings	53
	5.2.2	Priority Areas for Utilities	53
	5.2.3	Conclusion	55
6.	Glossarv of	f KPIs	56

1. Introduction

This report summarizes the key performance indicators (KPIs) reported by Pacific Power Association (PPA) member utilities for the Fiscal Year 2022, utilizing data collected and analyzed through PPA's Benchmarking Application, PRISM (Pacific Regional Infrastructure & System Metrics). This initiative aims to strengthen governance and institutional capacity within Pacific power utilities and foster data-driven decision-making through peer collaboration. This report supports PPA's objective of improving the region's power quality by providing comprehensive and comparable performance data.

PPA has a long history of facilitating benchmarking studies for its member electricity utilities, with efforts commencing in 2001 and recommencing in 2010 after a nine-year lapse. These exercises have traditionally involved collecting annual data covering various aspects of utility management, culminating in the publication of benchmarking reports. This 2022 Fiscal Year Benchmarking Report includes analyses of utility governance, gender diversity in the energy workforce, data reliability, and performance across 46 KPIs. These reports serve as a crucial tool for PPA members to understand their performance relative to their peers and identify areas for potential improvement.

The development and deployment of PRISM represent a significant evolution in PPA's benchmarking efforts. Unlike previous methodologies that relied on manual data submission and analysis via Microsoft Excel spreadsheets, PRISM provides a regional information sharing network with a dedicated KPI database and dashboard system. This new approach introduces several key differences:

- **Centralized KPI Database:** PRISM utilizes a relational database (in MySQL) to store raw data inputs and automatically calculate KPIs, ensuring consistency and reducing potential interpretation errors. This approach contrasts with past methods, where utilities sometimes provided pre-calculated indicators.
- Streamlined Data Entry: Data for FY 2022 and onward is primarily intended to be
 entered into PRISM through a WebApp interface or by uploading a Data Collection
 Worksheet (DCW), offering a more structured and potentially automated data
 submission process.
- Enhanced Data Validation: PRISM incorporates data validation tools within the DCW and the WebApp to improve data quality during entry. The system also features workflows for review and endorsement by BLOs, CEOs, and PPA's BMO, enhancing data checking and accuracy.
- Dynamic Benchmarking Dashboard: PRISM features an interactive Benchmarking Dashboard (accessed via https://ppa-dashboard.com/) that allows users to visualize and compare KPIs across utilities, offering a more dynamic and user-friendly experience than static reports.
- Monthly Performance Tracking: PRISM can also collect monthly performance data, enabling utilities to integrate benchmarking into their regular management practices, a capability less emphasized in prior annual reports.
- Refined Scope of Benchmarking Indicators: The set of KPIs tracked in PRISM has been reviewed and updated, with modifications, reorganizations, and new indicators (such as Operating Cost Recovery and profitability metrics) to provide a more comprehensive view of utility performance. Some indicators, like the Overall Composite Indicator, have been dropped to allow for a more granular and relevant analysis.

 Contextual Information: PRISM aims to incorporate utility-specific and country-level descriptive information to contextualize KPI results better and facilitate more meaningful comparisons.

Therefore, this FY22 Benchmarking Report leverages PRISM's capabilities to provide an insightful overview of the performance of participating PPA member utilities, reflecting an advanced and more dynamic approach to data collection, analysis, and reporting compared to previous years. The data and insights presented herein are intended to support continuous improvement and advancing a sustainable and resilient power sector in the Pacific. The transition to PRISM marks a significant step towards strengthening PPA's utility benchmarking activities and empowering its members with more robust and actionable performance insights.

1.1 Benchmarking Overview

Nineteen out of the twenty-six utility members have provided data for the 2022 report, one fewer than the number of utilities that participated in 2021.

This exercise commenced in 2001 and recommenced in 2010 after a lapse of 9 years. The list of participating utilities during this period is shown in Table 1.1.

Table 1.1: Utility Participation in 2001 and from 2010 to 2022

	Utility							Da	ta Per	iod						
	,		2001	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
Acronym	Name	Country/ Territory					,	Year D	ata Co	llecte	d					
			2002	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2024
ASPA	American Samoa Power Authority	Amercian Samoa	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	×	✓
CPUC	Chuuk Public Utility Corporation	Fed. Staes of Micronesia (FSM)	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
CUC	Commonwealth Utilities Corporation	Commonwealth of Northern Marianas	×	✓	✓	✓	✓	×	✓	×	✓	✓	√	×	×	✓
EDT	Electricite de Tahiti	French Polynesia	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	×	×	×	×
EEC	Electricite et Eau de Caledonia	New Caladonia	✓	×	×	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
EEWF	Electricite et Eau de Wallis et Futuna	Wallis & Futuna	✓	×	×	×	×	×	×	×	×	×	×	×	×	×
EFL	Energy Fiji Limited	Fiji	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	×	×	✓	✓
ENERCAL	Societe Neo- Caledonnenne D'Energie	New Caladonia	✓	×	×	×	×	×	×	×	×	×	×	✓	✓	×
EPC	Electric Power Corporation	Samoa	✓	✓	✓	✓	✓	✓	✓	✓	×	✓	×	✓	✓	✓
GPA	Guam Power Authority	Guam	✓	✓	✓	✓	✓	✓	✓	✓	×	✓	×	✓	✓	×
KAJUR	Kwajalein Atoll Joint Utility Resources	Marshall Islands (RMI)	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	×	×	×	×
KUA	Kosrae Utilities Authority	Fed. States of Micronesia (FSM)	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
MEC	Marshall Energy Company	Marshall Islands (RMI)	×	✓	✓	✓	✓	✓	✓	✓	✓	✓	×	✓	✓	✓
NPC	Niue Power Corporation	Niue	✓	✓	×	×	×	×	×	×	×	×	×	×	×	×
NUC	Nauru Utilities Corporation	Nauru	×	✓	✓	✓	×	×	✓	✓	✓	✓	×	✓	✓	✓
PPL	PNG Power ltd.	Papua New Guinea (PNG)	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
PPUC	Palau Public Utilities Corporation		✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
PUB	Public Utilities Board	Kiribati	✓	✓	✓	✓	✓	✓	✓	×	✓	✓	✓	✓	✓	✓
PUC	Pohnpei Utilities Corporation	Fed. States of Micronesia (FSM)	✓	×	✓	✓	✓	×	✓	✓	✓	✓	✓	✓	✓	✓
SCE	Southern California Edison	Santa Catalina Island												✓	✓	×
SP	Solomon Power	Solomon Islands	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
TAU	Te Aponga Uira O Tunu-Te-Varovaro	Cook Islands	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
TEC	Tuvalu Electricity Corporation	Tuvalu	×	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
TPL	Tonga Power Limited	Tonga	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
UNELCO	UNELCO Vanuatu Ltd.	Vanuatu	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
YSPSC	Yap State Public Service Corporation		×	✓	✓	✓	✓	✓	✓	×	✓	✓	✓	✓	✓	✓
		Total	20	21	21	21	21	19	22	18	21	22	15	20	20	19

2. Governance

2.1 Quality Standards and Regulatory Structure

The quality standard and regulatory structure data provided by utilities are shown in Table 2.1.

Table 2.1: Quality Standard and Regulatory Structures of Utilities

Utility	Power Quality Standards	Self Regulated or Externally Regulated	Public/Private Ownership	Accounting Standards
ASPA	US	Self-regulated	Public	US GAAP
CPUC	US	Self-regulated	Public	US GAAP
CUC	US	Self-regulated	Public	US GAAP
EEC	Concession Contract	Externally regulated	Private	
EFL	AUS/NZ	Externally regulated	Public	IFRS
EPC	AUS/NZ	Self-regulated	Public	IAS
KUA	Under the Association of Micronesia Utilities (AMU)	Self-regulated	Public	US GAAP
MEC	US	Self-regulated	Public	US GAAP
NUC	AUS/NZ	Self-regulated	Public	IFRS
PPL	AUS/NZ	Externally regulated	Public	IFRS
PPUC	US	Externally regulated	Public	US GAAP
PUB	AUS/NZ	Externally regulated	Public	US GAAP
PUC	US	Self-regulated	Public	Other
SP	AUS/NZ	Self-regulated	Public	IFRS
TAU	AUS/NZ	Self-regulated	Public	NZ IFRS
TEC	AUS/NZ	Self-regulated	Public	IAS
TPL	AUS/NZ	Externally regulated	Public	IFRS
UNELCO	Concession Contract	Externally regulated	Private	French GAAP & IFRS
YSPSC	US	Self-regulated	Public	US GAAP

2.2 Governance Assessment

The governance of participating Pacific power utilities shows varying implementation of practices. Table 2.2: presents a detailed tabulation of governance indicators across multiple utilities. The responses highlighted in green indicate best practices for governance.

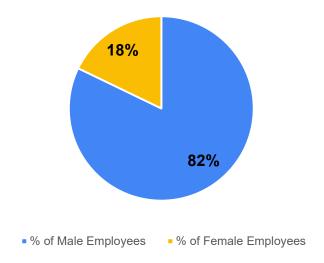
The data indicate that most utilities have established codes of conduct, with nearly all reporting that these codes are both in place and implemented. Similarly, commercial mandates are widely established, though their implementation varies slightly among utilities.

Performance contracts for CEOs appear to be standard practice across most reporting utilities, with only a few exceptions. Annual reviews of these performance contracts are also commonly implemented.

The presence of ministers or public servants representing line/sector ministries on utility boards varies substantially. Some utilities report no ministerial appointments to their boards, while others indicate that ministers or public servants from relevant ministries are appointed to their boards.

Strategic planning practices appear relatively strong across the sector, with most utilities reporting that they have adopted and implemented strategic plans that include forecasts for three or more years. However, several utilities have not adopted such plans.

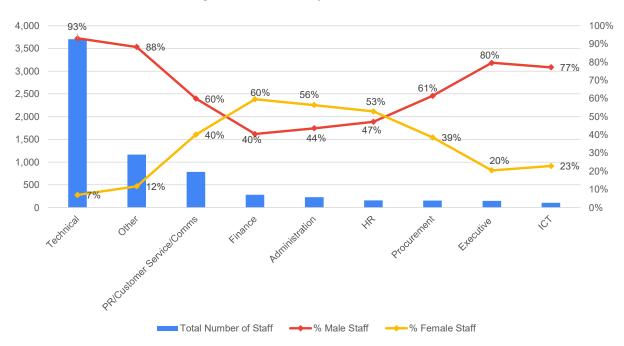
Most utilities complete their annual reports within four months of the end of the reporting year, though there are some exceptions. The disclosure of performance against strategic plans in these annual reports varies, with some utilities not including this information.


Some utilities demonstrate strong governance frameworks, including CPUC, EEC EFL, EPC, KUA, NUC, and PPL, PPUC, SP, TAU, TEC, and UNELCO, which report positive responses across most or all governance indicators. MEC did not provide governance data for some of the indicators assessed.

	ASPA	CPUC	CUC	EEC	EFL	EPC	KUA	MEC	NUC	PUB	PUC	PPL	PPUC	SP	TAU	TEC	TPL	UNEL CO	YSPC S
Ensuring the basis for an effective corporate governance framework																			
Is a Code of Conduct in place?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Is a Code of Conduct																			
implemented?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Is a commercial mandate in	.,								.,		.,						.,		l l
place? Is a commercial mandate	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
implemented?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Voc	No	Yes	Yes	Voc	Yes	Yes	Voc	Yes	Yes	No
Is the CEO on a performance	res	res	res	res	res	res	res	INO	Yes	INO	res	res	Yes	res	res	Yes	res	res	INO
contract?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
Does the CEO's performance							. 55				. 55				. 55				.10
contract include annual reviews?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
Board composition	,																		
Are Ministers appointed to the																			
Board?	Yes	No	Yes	No	No	No	No		No	No	No	No	No	No	No	No	No	No	No
Are Ministers or public servants																			
representing the line/sector																			
Ministry appointed to the Board?	Yes	No	Yes	No	Yes	No	Yes		Yes	No	No	No	No	No	No	Yes	No	No	Yes
Strategic planning					I														
Has a Strategic Plan been																			
adopted? Does the Strategic Plan include	Yes	Yes	No	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
three or more years of forecasts?	Voc	Voc	Na	Voc	Yes	Voc	Voc		Voc	Voc	Voc	Voc	Voc	Voc	Voc	Voc	Voc	Vos	No
Is the Strategic Plan	Yes	Yes	No	Yes	res	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	INO
implemented?	Yes	Yes	No	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
Disclosure and transparency																			
Is the Annual Report completed																			
within four months of the end of																			
the reporting year?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	No	No	Yes	No	Yes	Yes	Yes	No	Yes	Yes
Is the Annual Report audited?	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	No
Does the Annual Report disclose																			
performance relative to the																			
Strategic Plan?	Yes	Yes	No	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	No	Yes	No

3. Gender

The total workforce of Pacific power utilities is predominantly male, with female employees representing a much smaller portion of the utilities' workforce. Figure 3.1 shows the breakdown.



Out of 19 participating utilities, only one has a female CEO. The ratio of second in command is 5:1 (male to female). Gender representation varies substantially across different divisions, as shown below:

- Technical Employees: 3,450 male and 256 female employees
- Other Employees: 1,030 male and 136 female employees
- PR, Marketing, and Customer Service: 469 male and 314 female employees
- Finance Employees: 114 male and 168 female employees
- Administrative Employees: 99 male and 128 female employees
- Procurement Employees: 94 male and 59 female employees
- ICT Employees: 81 male and 24 female employees
- Human Resource Employees: 74 male and 83 female employees

The data shows 117 male executives compared to 30 female executives. This representation at leadership levels provides insight into the gender balance in decision-making roles within Pacific power utilities. Figure 3.2 shows the workforce gender breakdown by functional division.

4. KPI Results

4.1 Introduction

This section provides performance results for the 19 utilities that submitted data in the FY 2022 reporting year. The results are comprised of KPI results and the region's maximum, minimum, and median (middle) values.

An indication of utility size is provided via a color coding system determined by utility peak load following the PPA's membership level categorizations:

- Green indicates an annual peak load of less than 5MW (small)
- Orange indicates an annual peak load between 5MW and 30MW (medium)
- Red indicates an annual peak load of 30MW or greater (large)

Table 4.1 provides an overview of some key characteristics of the participating utilities, including the applicable color coding.

Table 4.1: Utility Key Characteristics

Utilities	Peak Demand	Size	Smaller	Total Annual	Renewable
	(for Largest	Category		Energy (MWh)	Energy
	Grid) (MW)	,	Serviced	37 (, ,	Contribution
ASPA	26.90	Medium	Yes	173,445.38	0.9%
CPUC	2.72	Small	Yes	16,383.29	4.8%
CUC	40.00	Large	Yes	264,448.95	0.0%
EEC	82.60	Large	Yes		
EFL	182.51	Large	Yes	603,068.10	95.5%
EPC	25.95	Medium	Yes	171,474.18	22.6%
KUA	1.18	Small	No	6,530.00	0.0%
MEC	9.20	Medium	Yes	63,527.00	0.3%
NUC	5.80	Medium	No	4,319.37	21.2%
PPL	132.50	Large	Yes	1,468,174.11	40.2%
PPUC	13.10	Medium	Yes	76,840.03	0.0%
PUB	5.51	Medium	No	30,166.99	6.2%
PUC	6.70	Medium	Yes	37,213.20	2.1%
SP	15.53	Medium	Yes	84,509.04	1.3%
TAU	4.83	Small	No	31,485.63	3.4%
TEC	1.47	Small	Yes		
TPL	11.50	Medium	Yes	77,202.00	6.2%
UNELCO	12.38	Medium	No	62,929.00	7.1%
YSPSC	1.85	Small	Yes	9,987.85	11.5%

Note:

- 1. The peak demand is for the largest grid operated by the utility, while the energy demand is aggregated for all the grids operated by the utility.
- 2. Only utilities that reported data are included in the table.

4.2 Generation

This section presents the generation KPIs included in PRISM. For power utilities in the Pacific, benchmarking generation indicators is critical because generation costs and reliability largely determine the affordability and stability of electricity supply in small, isolated island systems. Many Pacific utilities depend on imported diesel or other expensive fuels and operate a mix of aging thermal units and new renewable plants, so inefficiencies or unplanned outages quickly translate into higher tariffs, supply disruptions, or increased subsidies.

By systematically tracking and comparing KPIs such as fuel efficiency, load factor, capacity factor, forced outage rates, and renewable energy penetration against regional or international benchmarks, utilities can identify underperforming units, optimize maintenance schedules, improve dispatch decisions, and plan investments in more efficient or resilient technologies. This evidence-based approach can help PPA members control costs, reduce exposure to fuel price shocks, improve reliability, and make a stronger case to regulators, governments, and donors for financing cleaner and more efficient generation assets.

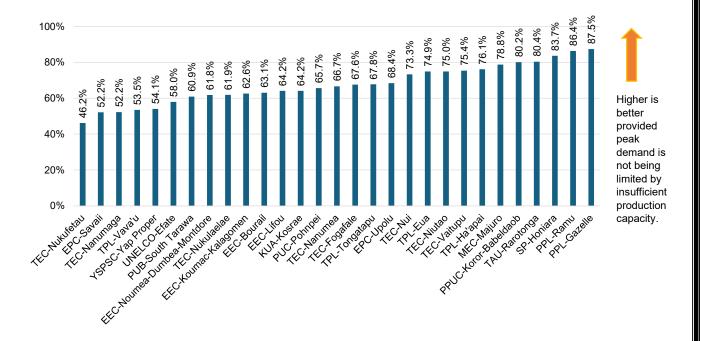
4.2.1 Load Factor The load factor (LF) is a key performance metric that measures power system capacity utilization. It is calculated by dividing the average load demand by the peak demand over a specified period. This report presents LF for each electricity grid service area operated by the utility for the fiscal year.

Understanding load factor provides crucial insights into system efficiency:

- A low LF indicates peak demand significantly exceeds average demand, resulting in underutilized production capacity. This suggests inefficient resource use, as infrastructure must be maintained to meet occasional high peaks rather than consistent usage.
- A high LF typically signals efficient capacity utilization, characterized by a relatively steady demand profile. However, it's important to note that a high LF can be misleading when it results from forced load shedding due to insufficient production capacity. In such cases, the elevated load factor reflects system constraints rather than operational efficiency.

Industry standards establish that the minimum acceptable LF is 50%. Pacific Island utilities target a benchmark of 80%.

Utilities can implement various strategies to improve load factor performance:


- Demand-side management
- Time-of-use tariffs
- Peak lopping
- Demand shifting strategies

These optimization strategies are expected to play an increasingly significant role in Pacific power sector policies, as they help manage peak demand while improving overall system efficiency.¹

For the 2022 fiscal year, 40 service areas reported their load factor data, but 11 outliers were excluded from the results shown in Figure 4.1. The values range from 46.2% to 87.5%, with a median of 66.7%.

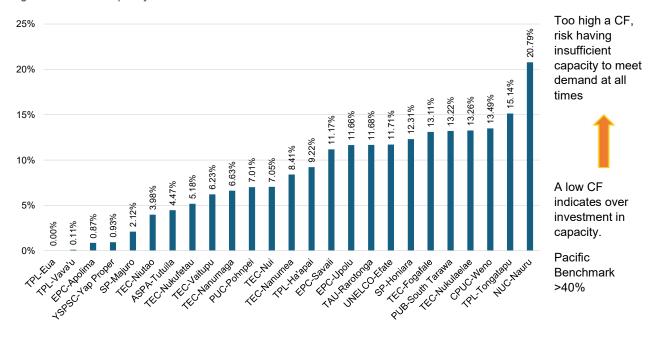
¹ PPA ADB, Pacific Power Utilities, pp. 5-1.

Figure 4.1: Load Factor

4.2.2 Capacity Factor The capacity factor (CF) is also an indicator of the effectiveness of using generation resources. It is a similar measure to LF. Where LF measures average power as a percentage of maximum demand, CF measures average power demand as a percentage of installed firm capacity. The lower the CF, the greater the production reserve capacity available for demand when production units are taken out of service for maintenance or repairs due to faults. It also may suggest overinvestment in production capacity, which is best avoided.

A higher CF indicates a peak demand that approaches available production capacity. This may make scheduling maintenance for the generating plants difficult and result in load shedding during peak load periods when generators are taken out of service due to faults.

The investment in production capacity is determined by the power security policy adopted by the utility. Utilities may adopt a security policy of N-1 or N-2. N-1 production capacity is the maintenance of sufficient production capacity to cater for the loss of the generating unit with the largest capacity in the fleet. Likewise, N-2 caters to the loss of the two largest units in the fleet.


The minimum production capacity is determined by the power security policy adopted based on experience regarding reliability, the cost of investment, and expectations regarding the lifespan of the firm's production equipment. Installing more capacity than required would be an inefficient way of utilising a utility's financial resources, while underinvesting may compromise the reliability of the power supply.

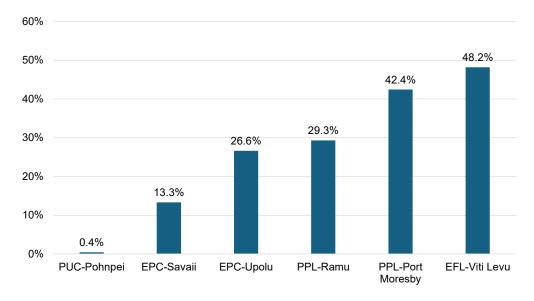
The data from 2022 allows examination of capacity factors across different generation types. Note that the following charts include data aggregated for generation capacity owned by the utilities, excluding generation capacity owned by IPPs in the service areas.

Solar Capacity Factor

In 2022, utilities reported solar capacity factors for 25 service areas as shown in Figure 4.2. The median solar capacity factor was 8.4%, with values ranging from 0% to 20.8%.

Figure 4.2: Solar Capacity Factor

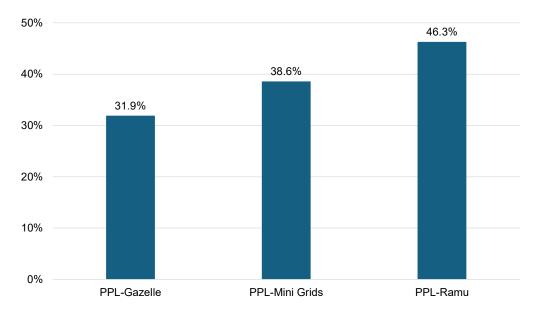
Wind Capacity Factor


In 2022, four service areas reported wind capacity factors, with one outlier excluded The median wind capacity factor was 10.9%, with values ranging from 10.1% to 22.3%.

Hydropower Capacity Factor - Dams

In 2022, six service areas reported dam hydropower capacity factor. The median hydropower capacity factor was 28.0%, with values ranging from 0.4% to 48.2%.

Figure 4.4: Hydropower Capacity Factor (Dams)

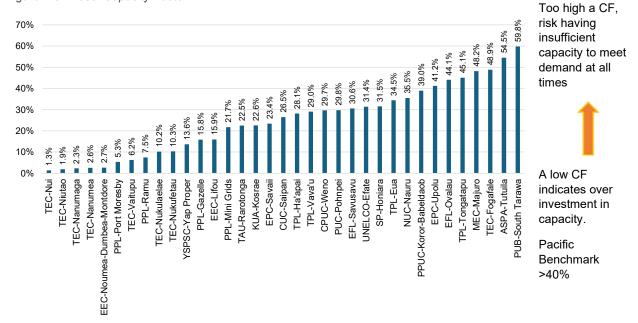


The higher the capacity factor, the better the performance. The larger the storage the larger the capacity factor.

Hydropower Capacity Factor - Run of Rivers

In 2022, six service areas reported run-of-rivers hydropower capacity factor. The median hydropower capacity factor was 28.0%, with values ranging from 0.4% to 48.2%.

Figure 4.5: Hydropower Capacity Factor (Run of Rivers)



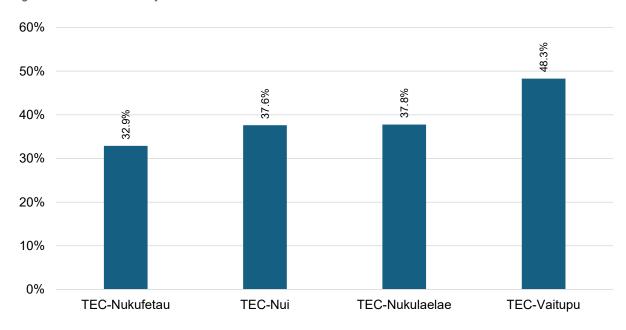
The higher the capacity factor the better the performance. The larger the storage the larger the capacity factor. Run of river hydro schemes are more likely to have a lower capacity factor.

Diesel Capacity Factor

Diesel generation capacity factors vary substantially across the Pacific utilities. A total of 38 service areas reported their diesel capacity factors in 2022. Three outliers were removed from the sample to avoid skewing the benchmarking results. The median diesel capacity factor was 26.5% in 2022, with values ranging from a minimum of 1.3% to a maximum of 59.8%.

Figure 4.6: Diesel Capacity Factor

4.2.3 Availability Factor The availability factor (AF) indicates how well a power plant is operated and maintained. It is determined by the actual hours the unit is available for production divided by the maximum available hours for the period. Because power plants need to be taken out of service for routine maintenance, an AF of 100% is not achievable. The type of power plant and its mode of operation may affect the AF. For a base load diesel power plant, with higher running hours, more routine maintenance would be required, resulting in a lower AF. An AF between 90% and 95% is expected for such a power plant. The AF should be a little higher for a plant that is operated less frequently.


A higher-than-expected AF may mean the plant is being insufficiently maintained, which could soon lead to more frequent breakdowns. A lower AF indicates more frequent breakdowns and outages for repairs due to poor maintenance and operation protocols.

This section presents the availability factors for different generation technologies based on the 2022 data.

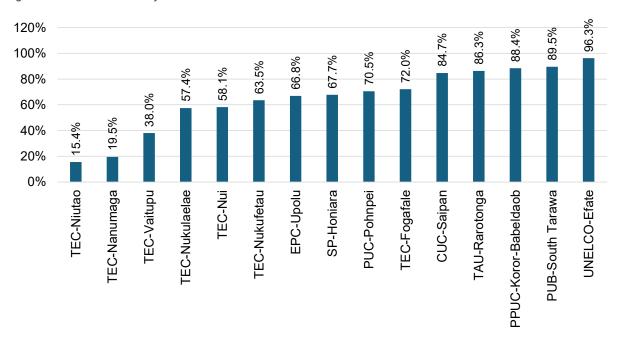
Solar Availability Factor

In 2022, 22 service areas reported data for solar availability factor. Most service areas (13 out of 22) reported a 100% availability factor for their solar generation facilities. In total, 18 outliers were excluded from Figure 4.7.

Figure 4.7: Solar Availability Factor

Wind Availability Factor

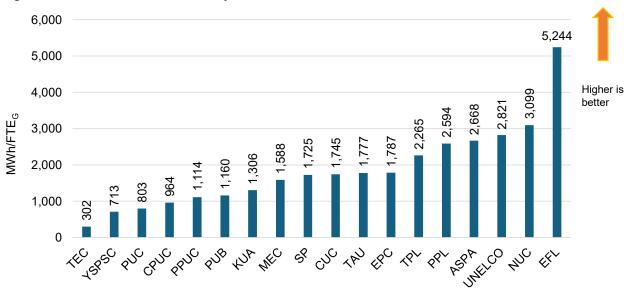
In 2022, all reporting service areas had a 100% availability factor for their wind facilities. Data needs to be checked to produce an accurate benchmarking of this KPI.


Hydropower Availability Factor

In 2022, eight service areas reported a hydropower availability factor, while seven outliers were excluded (four service areas reported availability factors of 100%, one reported a negative hydropower availability factor, and the remaining results did not reflect the characteristics of their service areas). Data needs to be checked to produce an accurate benchmarking of this KPI.

Diesel Availability Factor

Diesel generation, the most common form of power generation in the Pacific region, had 38 service areas reporting on availability factor in 2022. The data shows considerable variation, but the median value across all diesel generation service areas is 67.7%. Twenty-three service areas reported either very high results (more than 95%) or negative diesel availability factors, which were excluded from Figure 4.8.


Figure 4.8: Diesel Availability Factor

4.2.4 Generation Labour Productivity Generation Labour Productivity (GPL) is a measure of the total energy produced per full-time employee equivalent (FTE_G). Benchmarking of GPL for comparable utilities in size, demand, and generation asset types would indicate whether the utility production team is right-sized.

In 2022, 18 utilities reported Generation Labor Productivity, which shows substantial variation across utilities (see Figure 4.9). The maximum reported GPL was 5,244 MWh/FTE_G, while the minimum was 302 MWh/FTE_G. The median value across 17 reporting utilities was 1,734 MWh/FTE_G. The data shows that larger utilities such as EFL achieve higher generation labor productivity compared to smaller utilities, which is consistent with economies of scale.

Figure 4.9: Generation Labour Productivity

4.2.5 Specific Fuel Consumption DFO (kWh/Litre)

Specific fuel consumption (SFC) for diesel fuel oil (DFO) is a measure

of the efficiency of fuel used for power generation utilizing diesel-fired power generators, and is often reported in kWh/litre, kg/kWh, or kWh/gallon. It is a critical performance indicator because fuel costs account for the bulk of generation expenses in a typical diesel-based power utility. Importantly, SFC refers to the efficiency of utility fossil fuel generation only – it does not include purchased energy from Independent Power Producers (IPPs). Furthermore, non-diesel generation is not factored into this indicator.

As power utilities transition away from fossil fuel-based production of power to renewable resources, and more IPPs are engaged in the production of energy, the impact of fossil fuel will factor less in the overall efficiency and costs of energy production.

There were 32 service areas reporting this metric in 2022. The values ranged from a minimum of 0.8 kWh/litre to a maximum of 4.1 kWh/litre, with a median value of 3.6 kWh/litre. Six reported values were identified as outliers and excluded from Figure 4.10.

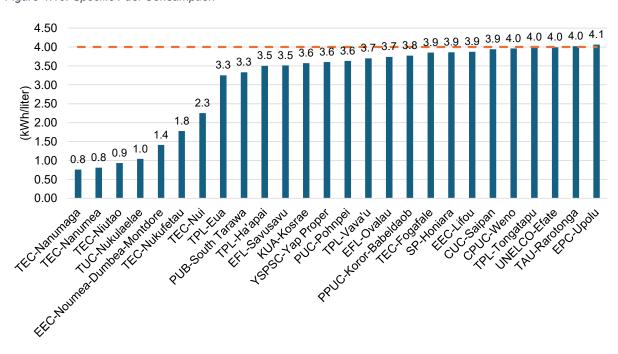
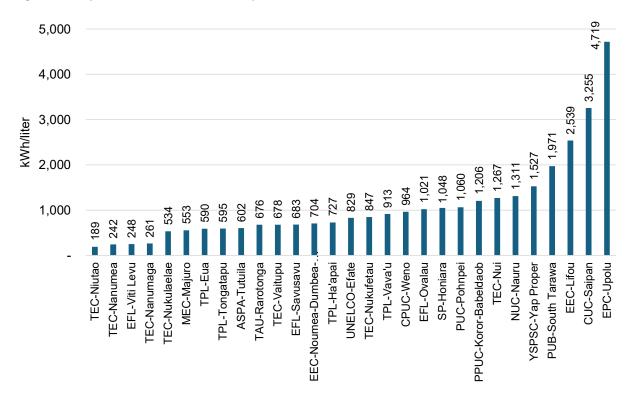


Figure 4.10: Specific Fuel Consumption

The benchmark for SFC in the Pacific is 4 kWh/litre (dotted line in Figure 4.10). A lower indicator value reflects a less efficient operation of the diesel generator.

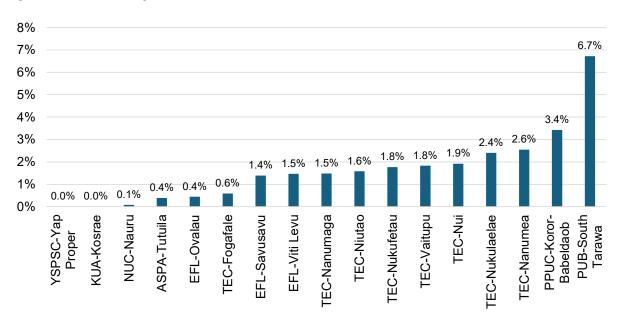

4.2.6 Specific Lubricating Oil Consumption Specific Lubricating Oil Consumption (SLOC) is a measure of the lubricating oil

efficiency of usage by the diesel and HFO generating units and is determined by the number of kWh generated per litre of lubricating oil consumed. The benchmark varies according to the size and condition of the diesel engine. Lower lubricating oil efficiency can be attributed to poor maintenance, e.g., due to worn piston rings or leaks in the system. Reasonable values are about 500–700 kWh per litre for a 1 MW engine and 1,000–1,300 kWh per litre for a 4–5 MW engine.

For the 2022 fiscal year, 30 service areas reported SLOC data. The values ranged from a minimum of 189 kWh/liter to a maximum of 4,719 kWh/liter. The median value across all reporting service areas was 829 kWh/liter. One of the reported service area values was identified as an outlier and excluded from Figure 4.11.

SLOC, much like the SFC, will become less important as an indicator as the contribution to the energy produced is increased from renewable sources, especially from solar PV power plants.

Figure 4.11: Specific Lubrication Oil Consumption



4.2.7 Forced Outage A forced outage is an unplanned outage (or generator downtime) that has been forced on the utility. Unplanned outages are attributable to issues with generators that compelled the utility to take them out of service.

This indicator serves as a measure of generation system reliability and maintenance effectiveness. The KPI enables utility managers to evaluate the health of their generation fleet and the effectiveness of their maintenance programs. System planners use this information to assess reserve margin requirements and capacity planning needs. The indicator also helps identify potential systemic issues that may require attention through maintenance program modifications or capital investments.

In 2022, 22 service areas reported on forced outages. However, five service area results were excluded from Figure 4.12 because they were identified as outliers. The median forced outage indicator for 2022 was 1.5%, while the Pacific benchmark is less than 3%. Results ranged from a minimum of 0% to 6.7%.

Figure 4.12: Forced Outage

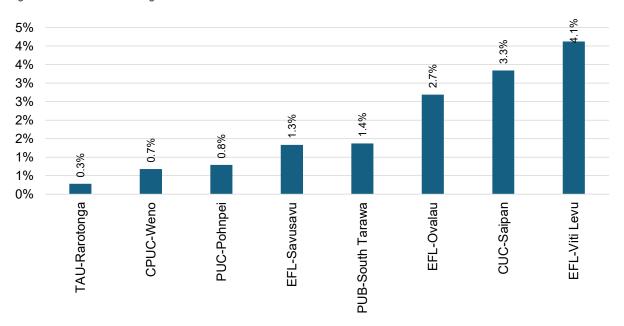
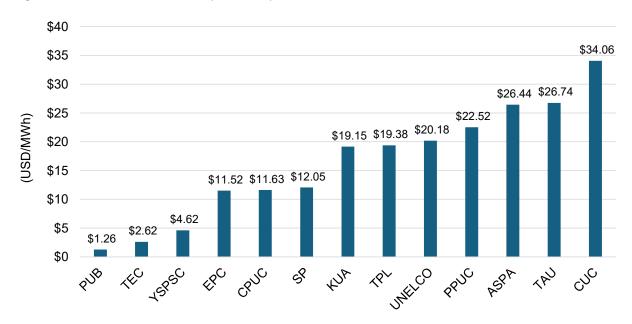

4.2.8 Planned Outage Planned or scheduled outages measure the proportion of downtime for planned maintenance activities that require the plant to be shut down. It is a scheduled loss of generating capacity as a percentage of installed capacity to generate energy. Planned maintenance of generating equipment is often compromised in Pacific Island utilities. Some reasons for this are (1) insufficient firm reserve capacity to allow the extended shutdown of generators due for scheduled maintenance, (2) a lack of spare parts in store, leading to long downtimes awaiting delivery of spares, and (3) a lack of funds for major contracted service work. When the intervals between maintenance are extended, the probability that generators will break down increases.

Figure 4.13 shows the planned outage indicator for 25 power grids for the fiscal year 2022. Seventeen values were identified as outliers and excluded from the chart.

The median planned outage indicator for 2022 was 1.3%, with values ranging from a minimum of 0.3% to a maximum of 4.1%. The Pacific benchmark is below 3%.

A planned outage indicator that is too low may indicate the lack of scheduled maintenance, which, if so, would eventually result in a higher-than-expected forced outage indicator.

Figure 4.13: Planned Outages

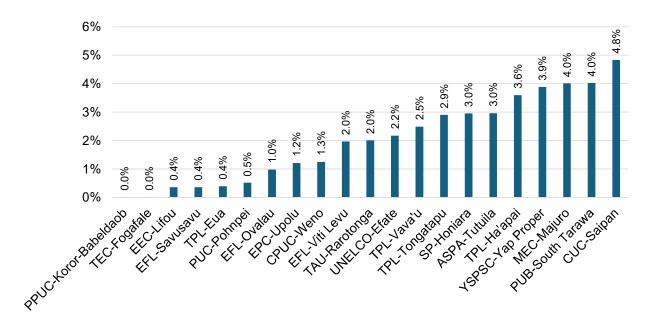

4.2.9 Generation Operations and Maintenance (O&M) Costs Generation Operations and Maintenance (O&M)

Costs per MWh measures the operational and maintenance expenditure required to produce each megawatt-hour of electricity. This metric indicates the cost efficiency of generation operations by normalizing O&M expenses against power production.

This indicator serves as a primary measure of generation cost efficiency and helps utilities optimize their operational expenses. Technical managers use it to evaluate cost control effectiveness and budget performance. Operations managers usually rely on this KPI to assess maintenance program value and identify opportunities for efficiency improvements. The metric supports both short-term operational decisions and long-term planning for generation asset management.

In 2022, 13 utilities reported their Generation O&M costs. The values ranged from a minimum of \$1.26 per MWh to a maximum of \$34.06 per MWh, with a median value of \$12.05 per MWh.

Figure 4.14: Generation O&M Costs (USD/MWh)

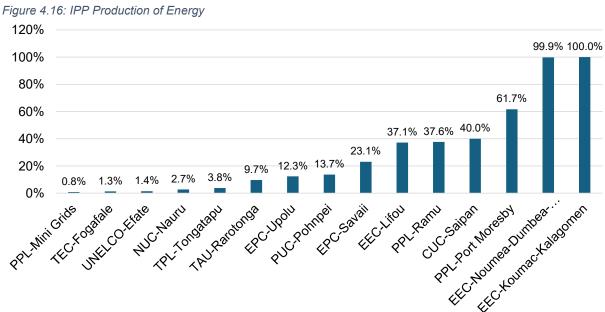


4.2.10 Power Station Usage / Station Auxiliaries Power Station Usage (also known as Station Auxiliaries) measures the percentage of generated electricity consumed internally by the power station for its own operations. This metric indicates the energy efficiency of plant auxiliary systems such as cooling systems, lighting, control systems, fuel handling equipment, and other support infrastructure.

This indicator serves as a key measure of generation plant efficiency, helping utilities evaluate the energy consumed by essential support systems. Plant managers usually use this KPI to optimize auxiliary system operations and identify potential efficiency improvements. The indicator enables utilities to assess the net power available for distribution to customers and evaluate the effectiveness of energy conservation measures within their generation facilities. Understanding station auxiliary consumption patterns supports both operational optimization and long-term planning for plant upgrades.

A value below 5% is considered acceptable, with lower values being preferable. In 2022, power station usage across the 23 reporting service areas ranged from a minimum of 0% to a maximum of 4.8%, with a median value of 2.0%. Two outliers were removed from this sample.

Figure 4.15: Power Station Usage

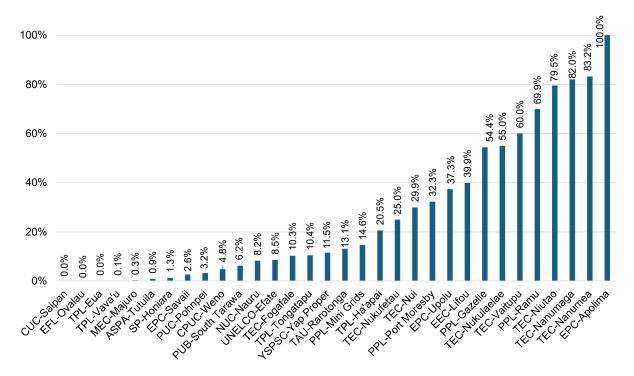


4.2.11 IPP Generation

Pacific Island utilities increasingly adopt Independent Power Producer arrangements to involve the private sector in

meeting the challenges of capacity investment to satisfy the power demand. Figure 4.16 illustrates the percentage of energy demand met by IPPs for utilities that have adopted this strategy in their production mix.

In 2022, 15 service areas reported IPP generation data. The percentage of energy demand met by IPPs ranged from a minimum of 0.8% to a maximum of 100.0%. The median value across reporting service areas was 13.7%.


4.2.13 Renewable Energy to Grid

The Pacific Island states have adopted aggressive aspirational targets for transitioning

to renewable energy to mitigate the impact of climate change. The power sector is a major

sector involved in implementing this policy. In 2022, 37 service areas reported on the contribution of renewable energy to their grids. Five outliers were identified and removed from the sample. The renewable energy contributions ranged from a minimum of 0% to a maximum of 100%, with a median value of 12.3%.

Figure 4.17: Renewable Energy Contribution

4.4 Transmission Indicators

This section presents the results for transmission KPIs. For PPA members with transmission networks, benchmarking is important because it provides a clear, objective measure of how efficiently and reliably the high-voltage backbone of the power system is operating. By tracking and comparing KPIs such as network losses and transmission realiability against regional or international benchmarks, utilities can identify weaknesses in their networks, prioritize maintenance or upgrades, and allocate scarce resources where they will deliver the most improvement.

4.4.1 Transmission (General) For the benchmarking exercise, the transmission network is defined as equipment operating at a voltage greater than

33kV. For utilities with a transmission network, the benchmarking questionnaire requested data to determine transmission losses and outage statistics to measure transmission system reliability. System reliability has been tracked based on transmission reliability (outage events per kilometre) and average transmission outage duration (in hours).

Transmission Losses represents the percentage of electrical energy lost during the transmission of electricity from generation sources to distribution substations. This KPI quantifies the efficiency of the high-voltage transmission system in delivering power across the network.

Transmission Reliability measures the frequency of power outages or disruptions in the transmission network, expressed as the number of outages per 100 kilometers of transmission lines. This KPI provides insight into the robustness and dependability of the high-voltage transmission infrastructure.

This component of the benchmarking also tracks transmission SAIDI and SAIFI (average duration of scheduled transmission system interruptions experienced by customers during the reporting period), as well as transmission SAIFI (average number of scheduled transmission interruptions experienced bycustomers during the reporting period).

Five PPA members have transmission networks, and of the five, two participated in the 2022 benchmarking survey. The utilities with transmission networks are ENERCAL, GPA, PPL, EFL, and EDT. The indicators are presented in the table below. Results for the Transmission Losses indicator were highly unreliable (values of 100% or negative values), so they were excluded from Table 4.2. Other outliers were also excluded.

Table 4.2: Transmission Indicators

Utility	Grid	Transmission Losses (%)	Transmission Reliability		ssion SAIDI Customer)	Transmission SAIF (Events/Customer)			
			(Outages/100 km)	Planned	Unplanned	Planned	Unplanned		
EFL	Viti Levu		8.83	0.0001	0.16	0.00004	0.00002		
EFL	Savusavu	0.38%							
PPL	Port Moresby		29.55						
PPL	Ramu	90.33%		1,324	10,621	16	247		

4.5 Distribution Indicators

This section presents PRISM's KPI results for distribution. For power utilities in the Pacific, benchmarking distribution KPIs is important because the distribution network is the part of the system that directly delivers electricity to customers, so its efficiency and reliability have the greatest immediate impact on service quality and revenue. In small, isolated island systems with aging infrastructure, limited technical staff, and high exposure to storms and other natural hazards, problems such as high technical and commercial losses, frequent outages, and delayed repairs are common.

By tracking and comparing KPIs—such as distribution networks losses, distribution reliability, and distribution O&M expenses—against regional or international benchmarks, utilities can identify weaknesses, prioritize maintenance and investment, and allocate scarce resources more effectively. This approach can help utilities improve operational efficiency, reduce losses, and enhance customer satisfaction.

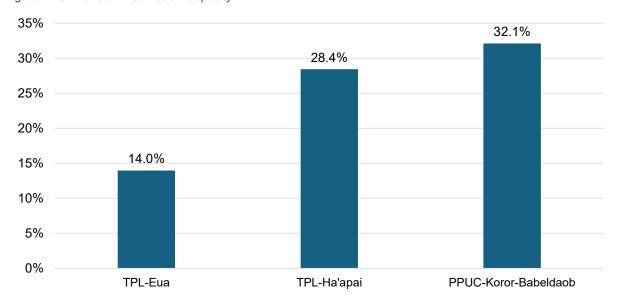
4.5.1 Network Delivery Losses Network delivery losses are defined as the net generation minus electricity sold, divided by net generation, and expressed as a percentage. Net Generation is energy generated less the power station auxiliary usage. For utilities that have a transmission network, this loss includes the transmission and distribution network losses. This is only true for utility members of the PPA who have a transmission network. For the other utility members who do not have a transmission network, the Network Delivery Losses are equal to the Distribution Losses. Therefore, in this report, the Distribution loss is not presented separately as in previous reports.

The losses comprise technical and non-technical losses. Technical losses are mainly caused by resistance in the network lines and cables, which may be exacerbated by imbalances in the currents for each phase and high resistance joints in the distribution system. These depend on distribution voltages, loading, conductor material, physical dimensions, and state of conductors. Non-technical losses are those attributable to electricity used by a consumer but not paid for, including electricity theft, meter reading and accounting errors, unmetered connections, metering errors, etc.

This category should not include the use of electricity within the utility itself (other facility use), free provision for street lighting, or electricity provided to the water and sewerage waste management for utilities responsible for electricity, water, and sewerage services.

In 2022, there were 39 service areas reporting their network delivery losses. However, 13 outliers were excluded from Figure 4.18. The results show considerable variation across the Pacific region. The minimum reported value was 2.5%, while the maximum was 31.3%. The median value was 9.2%.

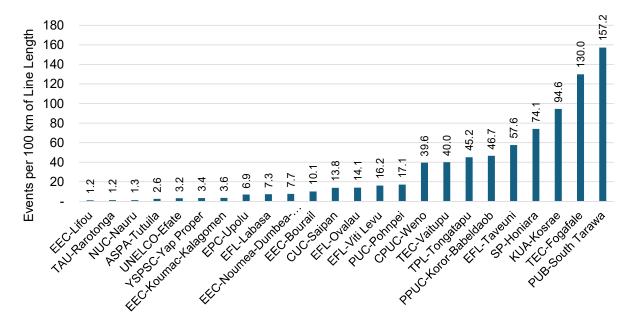
35% 30% 25% 20% 9.5% 15% 10% 2.5% 5% 0% SP-Honiara PPL-Gazelle TPL-Eua UNELCO-Efate **TEC-Nukulaelae** PUB-South Tarawa CPUC-Weno CUC-Saipan **ASPA-Tutuila** TEC-Niutao PPL-Mini Grids MEC-Majuro **FAU-Rarotonga** TPL-Tongatapu TPL-Ha'apai PPUC-Koror-Babeldaob TPL-Vava'u **EEC-Lifou** EPC-Upolu **EC-Nukufetau** PUC-Pohnpei PPL-Port Moresby TEC-Nu **NUC-Nauru** YSPSC-Yap Proper


Figure 4.18: Network (Distribution) Delivery Losses

4.5.2 Distribution Transformer Utilization

This indicator measures the transformer's average load against the transformer capacity in megavolt amperes (MVA). It is calculated by dividing the total electricity sold by the total capacity of distribution transformers. High utilisation implies an efficient capital expenditure process for investing in distribution transformer capacity to meet the demands of customers. This process takes into consideration non-coincident demand characteristics, demand growth, and contingency requirements to maintain supply security and reliability.

As seen in Figure 4.19, data for transformer utilisation in Pacific utilities was not reliable. Out of 26 reporting service areas, 23 outliers were removed because most results were either below 10% or above 40%. In 2002, a regional goal of 30% was set. The report noted that "this can only be achieved in the long term because of the long lead times required to improve usage of capital assets." The range for transformer utilization factor in 2022 was from 14.0% to 32.1%. The median transformer utilization factor across the three reporting service areas included in Figure 4.19 was 28.4%.


Figure 4.19: Transform Utilization Capacity

4.5.3 Distribution Reliability

This indicator measures the number of forced outage events per 100km of distribution line as a way of assessing the reliability of the distribution network. In 2022, data were collected from 30 service areas, with six outliers removed from the sample. The distribution reliability values ranged from a minimum of 1.2 to a maximum of 157.2 forced outage events per 100 km of distribution line. The median value across all reporting service areas was 14.0 events per 100 km.

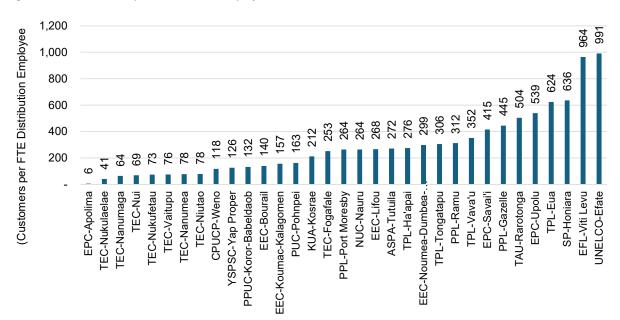
Figure 4.20: Distribution Reliability (Forced Outage Events)

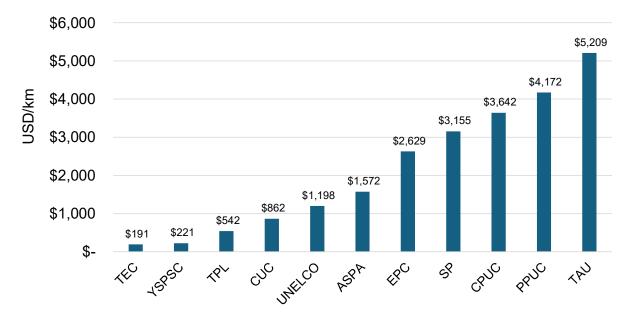
4.5.4 Customers per Distribution Employee Customers per Distribution Employee measures the number of customers served by each full-time-equivalent distribution employee. This metric indicates workforce efficiency in

the distribution segment and helps evaluate staffing levels relative to the customer base being served.

This indicator serves as a measure of distribution workforce productivity and staffing efficiency. The metric enables utility managers to evaluate their staffing levels and assess workforce deployment effectiveness. HR managers can also use this information to guide recruitment strategies and workforce development programs.

In 2022, 34 service areas reported this metric, while one outlier was removed from the sample. The values range from 6 to 991, with a median value of 263 customers per distribution employee. The data shows substantial variation across different utilities and service areas. Most service areas reported between 100 and 600 customers per distribution employee.




Figure 4.21: Customers per Distribution Employee

4.5.5 Distribution O&M Expenses The Distribution Operations and Maintenance O&M costs are the total expenses incurred in the operations and maintenance of the distribution network. This includes all vehicle operating costs and all other costs related to distribution operations. This total O&M cost is divided by the distribution

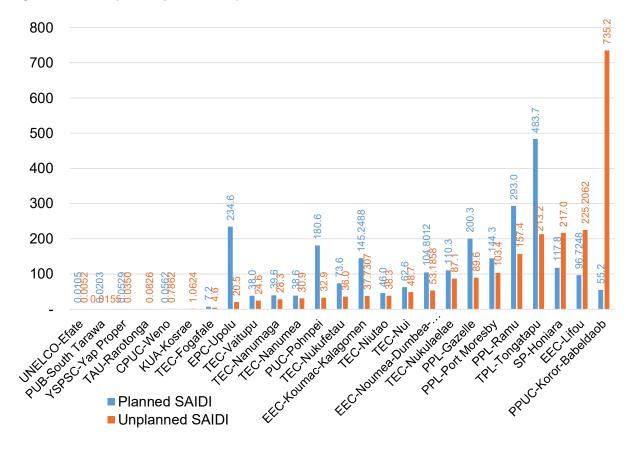
In 2022, 16 utilities reported their Distribution O&M expenses, with four outliers removed from the sample. The data shows a wide range of values, from a minimum of \$191 per km to a maximum of \$5,209 per km. The median value across reporting utilities was \$1,572 per km.

line length.

Figure 4.22: Distribution Operations and Maintenance Expenses

4.6 SAIDI and SAIFI

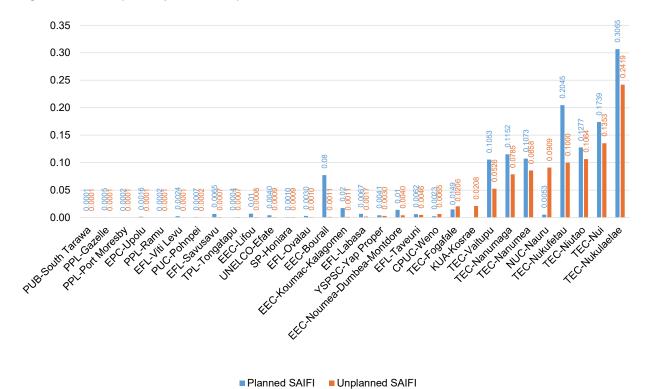
This section presents the results for SAIDI (System Average Interruption Duration Index) and SAIFI (System Average Interruption Frequency Index). For power utilities in the Pacific, benchmarking SAIDI and SAIFI is crucial because these KPIs provide an objective picture of how often and how long customers experience outages. In small, geographically dispersed island systems that rely on aging infrastructure and are highly exposed to storms, fuel shortages, and natural disasters, service reliability can fluctuate widely.


Tracking SAIDI and SAIFI over time and comparing them with regional or international benchmarks helps utilities pinpoint weak points in their networks, plan maintenance and investments more effectively, and demonstrate to regulators and donors that they are improving service quality. Reliable benchmarking also helps balance limited financial resources with reliability targets, ensuring that scarce funds are directed to the interventions that will have the greatest impact on reducing outage frequency and duration. By communicating these results transparently, utilities strengthen customer trust and accountability while building the case for further investment in resilience and modernization.

4.6.1 System Average Interruption Duration Index (SAIDI)

SAIDI indicates the average duration of power outages experienced by customers and is measured in customer minutes. The results are shown in Figure 4.23 as Planned and Unplanned outages that have resulted in power interruptions to customers. Only utilities that reported both planned and unplanned SAIDI in 2022 are included. The benchmark for Pacific Island utilities is for the total Planned and Unplanned SAIDI to be below 200 customer minutes.

A total of 33 service areas reported SAIDI values for 2022. However, eight outlier values were removed from the sample. The maximum Planned SAIDI value was 483.7 minutes, while the maximum Unplanned SAIDI value was 735.2 minutes. The median Planned SAIDI was 62.6 minutes, and the median Unplanned SAIDI was 36.9 minutes.


Figure 4.23: SAIDI (Minutes per Customer)

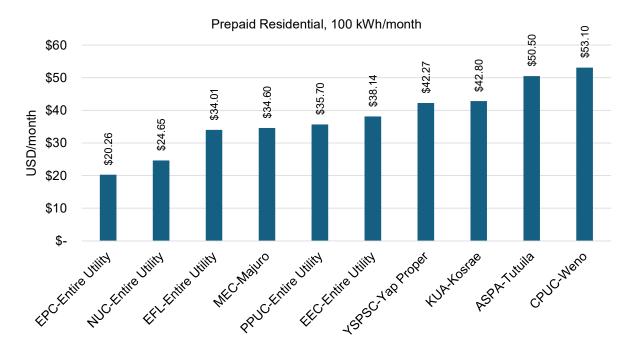
4.6.2 System Average Interruption Frequency Index (SAIFI) SAIFI indicates the average frequency of power interruptions experienced by customers over the fiscal year. For small island utilities, the power interruptions to customers caused by generation events can be significant compared to distribution network events.

A total of 32 service areas reported SAIFI values for 2022, with two outliers removed from the sample. The maximum Planned SAIFI value was 0.31 interruptions annually per customer, while the maximum Unplanned SAIFI value was 0.24. The median Planned SAIFI was 0.005 interruptions per customer, and the median Unplanned SAIFI was 0.002. Most of these values appear to be lower than expected, so they should be reviewed before the final version of this report.

Figure 4.24: SAIFI (Events per Customer)

4.7 Financial Indicators

This section presents the financial KPIs included in PRISM. Benchmarking financial indicators is especially important for power utilities in the Pacific because these utilities operate in small, isolated markets with high operating costs from imported fuel, shipping, and spare parts. Regularly tracking and comparing financial performance against peers helps them ensure cost recovery, liquidity, and prudent debt management so they remain financially viable and able to provide reliable service. Benchmarking also reveals inefficiencies in revenue collection, tariff structures, or cost control, allowing utilities to identify best practices and adopt reforms such as reducing technical and commercial losses.


Benchmarking financial KPIs also allow PPA members to improve transparency and accountability to stakeholders by showing how the utility performs relative to peers and accepted standards, which in turn builds trust and supports good governance. Transparent benchmarking can also strengthen the credibility of utilities with development banks, donors, and investors, which increasingly require evidence of sound financial management to extend concessional financing or favorable lending terms.

Finally, because utilities in the Pacific are highly vulnerable to climate change, natural disasters, and global fuel price shocks, financial benchmarking helps them build reserves, manage debt prudently, and plan capital investments in renewable energy and resilience projects.

- 4.7.1 Tariff Impact

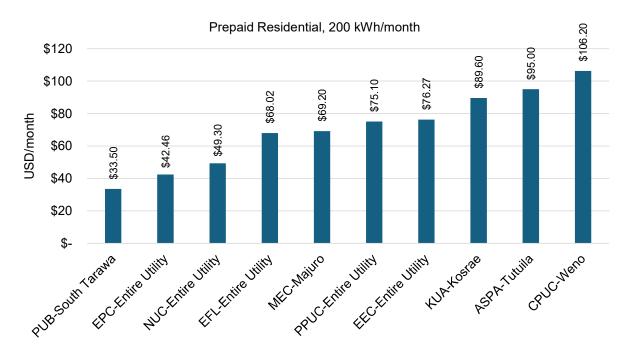

 Conducting tariff analysis of Pacific utilities is highly complex due to the different tariff schedules and structures. This section, therefore, compares the impact of the tariff schedule applied to customers of various categories. The monthly bills for domestic or residential customers (both prepaid and postpaid) with a usage of 100 kWh, 200 kWh, and 500 kWh are compared, ranked, and graphed in ascending order. The same is done for commercial customers with usages of 1,000 and 5,000 kWh per month. For industrial customers, the monthly electricity bill for a usage of 10,000 kWh per month is compared.
 - (i) Prepaid Residential Customer (100 kWh per month)

Figure 4.25: Prepaid Residential Customer with Usage of 100 kWh per month

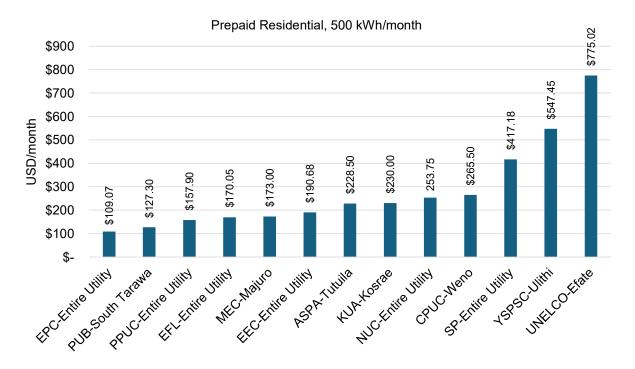

(ii) Prepaid Residential Customer (200 kWh per month)

Figure 4.26: Prepaid Residential Customer with Usage of 200 kWh per month

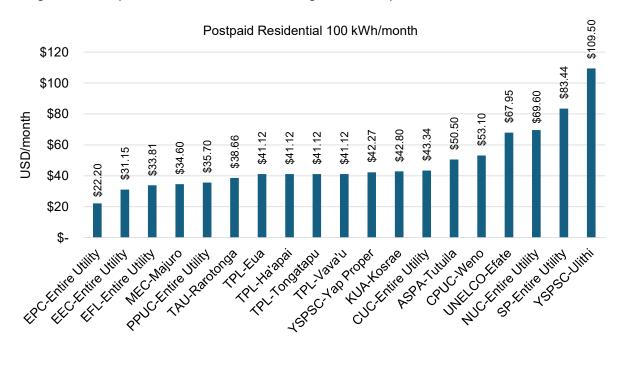

(iii) Prepaid Residential Customer (500 kWh per month)

Figure 4.27: Prepaid Residential Customer with Usage of 500 kWh per month

(iv) Postpaid Residential Customer (100 kWh per month)

Figure 4.28: Postpaid Residential Customer with Usage of 100 kWh per month

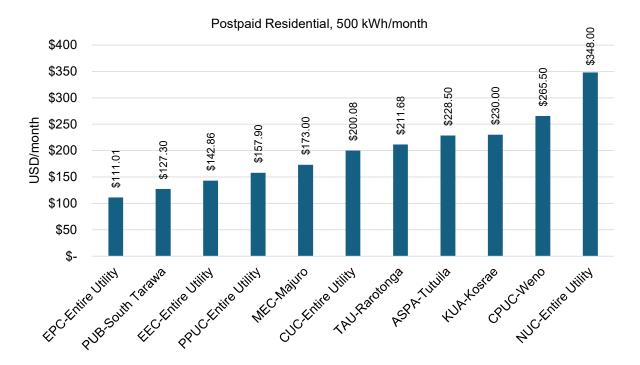

(v) Postpaid Residential Customer (200 kWh per month)

Figure 4.29: Postpaid Residential Customer with Usage of 200 kWh per month

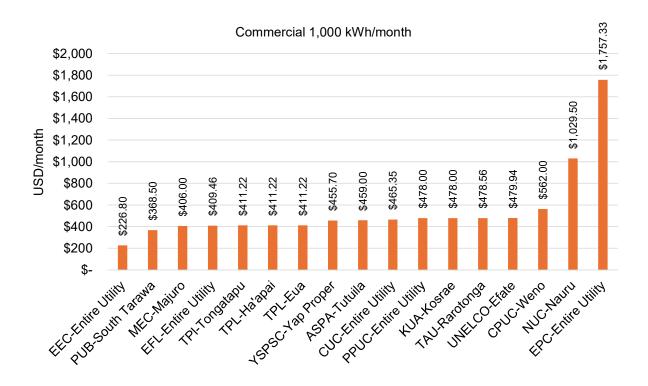

(vi) Postpaid Residential Customer (500 kWh per month)

Figure 4.30: Postpaid Residential Customer with Usage of 500 kWh per month

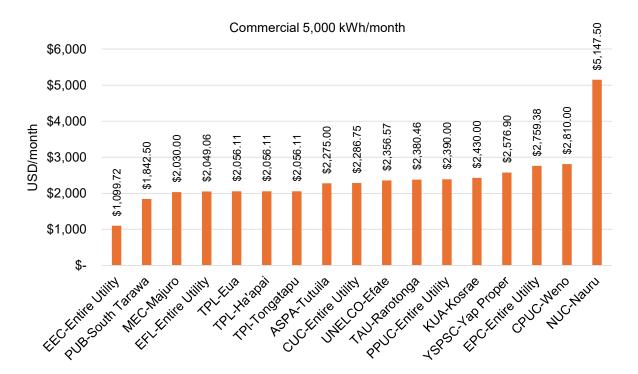

(vii) Commercial Customer (1,000 kWh per month)

Figure 4.31: Commercial Customer with Usage of 1,000 kWh per month

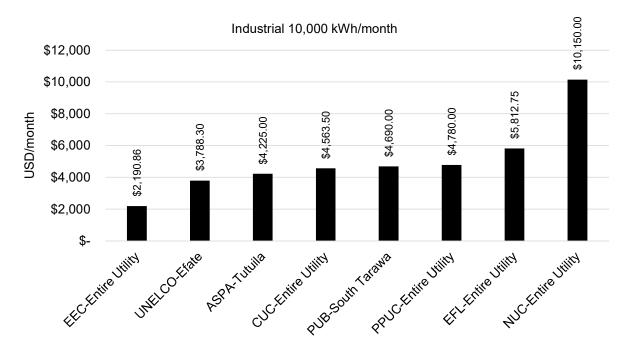

(viii) Commercial Customer (5,000 kWh per month)

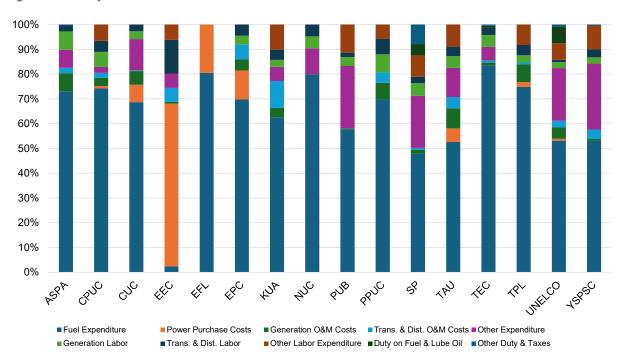
Figure 4.32: Commercial Customer with Usage of 5,000 kWh per month

(ix) Industrial Customer (10,000kWh per month)

Figure 4.33: Industrial Customer with Usage of 10,000 kWh per month

4.7.2 Utility Cost Breakdown

The Utility Cost Breakdown analyzes the composition of a utility's total operating costs by categorizing expenses into their major components. This metric provides visibility into the relative significance of different

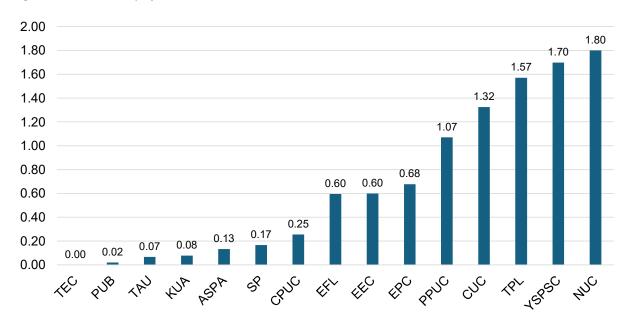

their major components. This metric provides visibility into the relative significance of different cost elements and helps identify the main drivers of operational expenses.

Cost structure management in Pacific island utilities requires consideration of their unique operating environment. Factors such as fuel import dependency, geographical isolation, and limited economies of scale can significantly impact cost patterns. Understanding these influences helps establish appropriate cost management strategies and improvement targets.

The cost categories for which information was collected in 2022 included hydrocarbon-based fuel expenditure, power purchase costs, generation O&M costs, transmission and distribution O&M costs, other expenditure, generation labor costs, transmission and distribution labor costs, other labor expenditure, duty on fuel and lubricating oil, and other duty and taxes. The contributions of each component are presented for the 16 utilities that reported sufficient data in Figure 4.34 below.

Fuel expenditure remains the largest component in the utilities' cost structure, ranging from 2.4% to 83.5%, with a median value of 69.2%. Power purchase costs represented a significant cost component for some utilities, with EEC reporting the highest share are 65.7% and EFL the second highest at 19.5%. Generation O&M costs ranged from 0.3% to 8.2% across reporting utilities, while transmission and distribution O&M costs showed significant variation, ranging from 0% to 10.8%. Labor costs were divided into three categories: generation labor, transmission and distribution labor, and other labor expenditure. Generation labor ranged from 0% to 7.5%, transmission and distribution labor from 0.9% to 13.5%, and other labor expenditure from 0% to 11.4%. Some utilities also reported significant percentages for "other expenditure," with YSPSC reporting the highest at 26.6% followed by PUB at 25.1%. Only a few utilities reported duty on fuel and lubricating oil, with UNELCO reporting 6.7% and SP reporting 4.6%. Similarly, for other duties and taxes, SP reported the highest at 7.9%.

Figure 4.34: Utility Cost Breakdown

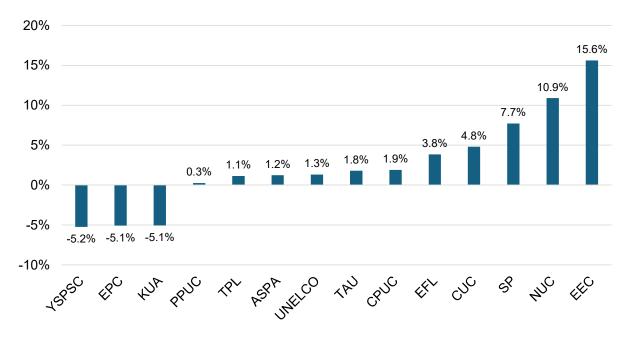

4.7.3 Debt-to-Equity Ratio The Debt-to-Equity Ratio measures a utility's financial leverage by comparing total liabilities to total equity. This metric indicates how much of the utility's capital structure is financed through debt versus shareholder equity, providing insight into financial risk and long-term solvency.

The relationship between debt financing and operational sustainability requires careful consideration in the Pacific utility context. While debt financing can support necessary infrastructure investments, the associated fixed obligations must align with the utility's revenue generation capacity and operational stability. Regular analysis of leverage patterns helps ensure the sustainability of financing arrangements.

Infrastructure development needs often create pressure for increased leverage in Pacific utilities. The requirement to maintain and expand power systems must be balanced against debt service capabilities and financial risk tolerance. Clear documentation of capital structure decisions helps demonstrate prudent financial management while supporting necessary infrastructure investments. Moreover, some smaller utilities do not have access to debt funding and rely on their government or grants from donors for large projects, so they have no long-term debt obligations.

In 2022, 17 utilities reported their Debt-to-Equity Ratios, with two outliers excluded from the sample. The values ranged from a minimum of 0 to a maximum of 1.8, with a median value of 0.6.

Figure 4.35: Debt-to-Equity Ratio



4.7.4 Return on Assets The rate of return on assets (RORA) is the return generated from the investment in the business's assets. ROA indicates how efficient management is at using its assets to generate earnings.

Asset performance management in Pacific island utilities requires consideration of factors such as infrastructure age, environmental conditions, and replacement costs. The relatively high fixed asset investment typical of island utilities makes ROA performance particularly significant for overall financial sustainability.

Pacific power utilities generally do not earn commercial rates of return, and this is reflected in Figure 4.36. In 2022, 17 utilities reported their ROA, and three outliers were excluded. The values ranged from a minimum of -5.2% to a maximum of 15.6%, with a median value of 1.6%.

Figure 4.36: Return on Assets

4.7.5 Return on Equity

Return on Equity (ROE) measures the financial return generated relative to shareholder investment, expressed as a percentage. This metric indicates how efficiently a utility generates profits from shareholder capital, providing insight into financial performance from an ownership perspective.

ROE management in Pacific island utilities requires consideration of their unique ownership structures and public service obligations. Many utilities operate as state-owned enterprises with mandates that balance financial returns against social objectives. Understanding this context helps in establishing appropriate return expectations and performance targets.

The interpretation of ROE must account for the specific operating environment of Pacific utilities. Factors such as scale constraints, infrastructure requirements, and service obligations can affect achievable returns. Regular analysis of return patterns helps ensure financial sustainability while meeting public service responsibilities.

Results for ROE are shown in Figure 4.37. In 2022, 15 utilities reported their ROE. The values ranged from a minimum of -8.5% to a maximum of 9.0%, with a median value of 2.6%.

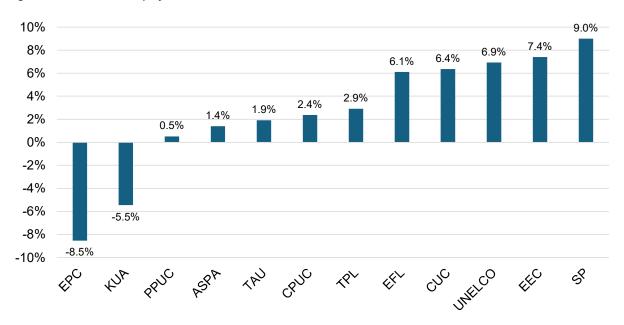


Figure 4.37: Return on Equity

4.7.6 Current Ratio The current ratio measures the ability of a business to pay its creditors within the next 12 months, i.e., the ability of the utility to meet its current liabilities from current assets. A current ratio above 1 is desirable. A ratio below 1 implies that the utility is not able to cover its current liabilities.

This indicator serves as a fundamental measure of financial liquidity and short-term solvency. The metric enables utility managers to evaluate their organization's ability to meet short-term financial commitments while maintaining normal operations. Financial planners use this information to assess working capital adequacy and guide treasury management decisions. Understanding liquidity patterns helps utilities optimize their working capital structure while ensuring operational stability.

Liquidity management in Pacific island utilities requires careful attention to factors such as revenue collection patterns, supply chain requirements, and seasonal variations in cash flow. The relatively isolated nature of many island utilities makes maintaining adequate liquidity particularly important for ensuring operational continuity.

Working capital requirements often reflect the unique operating environment of Pacific utilities. Extended supply chains for critical materials and equipment may necessitate higher inventory levels, while weather-related risks might require larger cash reserves. Understanding these factors helps utilities establish appropriate liquidity targets and management strategies.

In 2022, 15 utilities reported their current ratio values, and one outlier was excluded from the sample. The median current ratio was 2.5, with a maximum of 9.2 and a minimum of 0.1. Eleven utilities reported current ratios above 1, indicating they can meet their current liabilities, while three utilities reported ratios below 1.

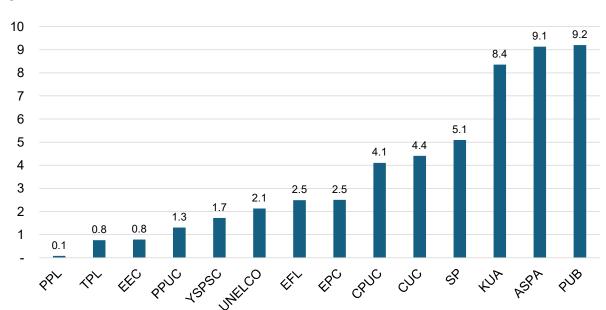


Figure 4.38: Current Ratio

4.7.7 Operating Ratio The operating ratio is a measure of how efficiently a business operates, in this case, by providing electricity service. It is determined by dividing the sum of the cost of sales and other operating expenses by the revenue earned; it therefore expresses the business's operating expenses as a percentage of its revenue. An operating ratio below 100% indicates a profitable operation. An operating ratio above 100% indicates that it is costing an organisation more to provide the service than the revenue derived from the service.

This indicator serves as a fundamental measure of operational efficiency and cost control effectiveness. The metric enables utility managers to evaluate their success in managing operating costs relative to revenue generation. Financial planners use this information to assess operational sustainability and identify areas requiring cost control or revenue enhancement. Understanding operating ratio trends helps utilities optimize their operational efficiency while maintaining service quality standards.

Operating ratio management in Pacific island utilities presents unique challenges related to scale economies, resource availability, and operating environment. The relatively small customer base and high fixed costs typical of island utilities can make it challenging to achieve operating ratios comparable to larger mainland utilities. Understanding these constraints helps in setting appropriate performance targets and identifying improvement opportunities.

Cost management requires particular attention in Pacific island contexts due to factors such as fuel import dependency, specialized maintenance requirements, and limited competition for

services. Regular analysis of operating ratio components helps identify areas where cost control efforts or efficiency improvements might be most effective. The relationship between operating costs and service quality must be carefully considered to ensure cost control efforts don't compromise reliability.

In 2022, 17 utilities reported their operating ratio, with one outlier excluded from the sample. The median operating ratio was 86.5%, with a maximum of 127.6% and a minimum of 61.8%. Twelve utilities reported operating ratios below 100%, indicating profitable operations, while four utilities reported operating ratios at or above 100%.

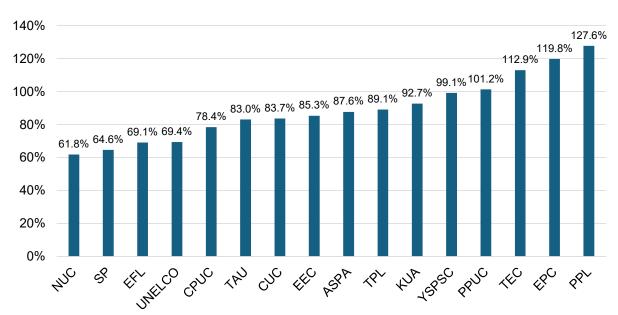
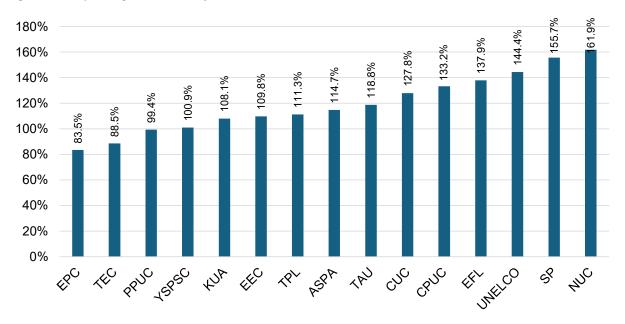


Figure 4.39: Operating Ratio


4.7.8 Operating Cost Recovery

Operating cost recovery measures how much of a utility's operating costs are covered by its revenues; revenue is divided by the sum of the cost of sales, other operating expenses (less

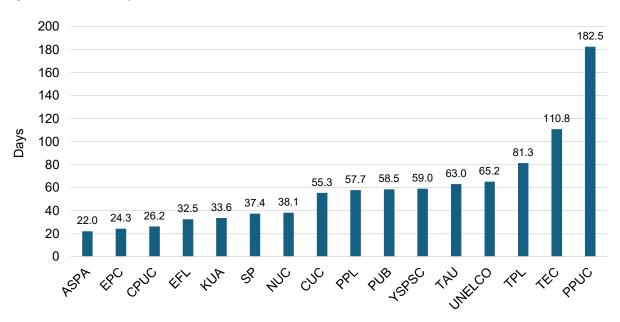
bad debt), and taxes. A percentage above 100% indicates that revenues exceed operating costs, while a percentage below 100% indicates that operating costs exceed revenues.

In 2022, 16 utilities reported their operating cost recovery, with one outlier excluded from the sample. The median operating cost recovery was 114.7%, with a maximum of 161.9% and a minimum of 83.5%. Twelve utilities reported operating cost recovery above 100%, indicating revenues exceeding operating costs, while three utilities reported operating cost recovery below 100%.

Figure 4.40: Operating Cost Recovery

4.7.9 **Debtor Days**

Debtor Days measures the average number of days it takes a utility to collect payment after billing customers. This metric indicates the effectiveness of the utility's revenue collection practices and provides insight into

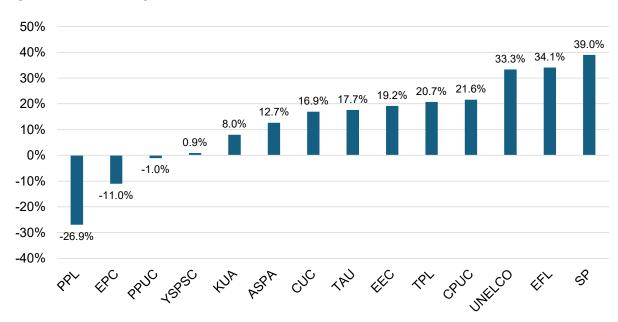

working capital management. This indicator serves as an important measure of revenue collection efficiency and cash flow management. The metric enables utility managers to evaluate the effectiveness of their billing

and collection practices while monitoring the financial health of their receivables portfolio. Financial managers use this information to forecast cash flows and manage working capital requirements. Understanding collection patterns helps utilities optimize their revenue management practices while maintaining positive customer relationships.

The effective management of receivables requires balancing collection efficiency with customer service considerations. While prompt payment collection is important for financial sustainability. collection practices must remain sensitive to community circumstances and payment capabilities. Clear documentation of collection policies and performance helps demonstrate fair treatment while supporting necessary collection actions.

In 2022, 16 utilities reported their debtor days. The median was 56.5 days, with a maximum of 182.5 days, a minimum of 22.0 days, and an average of 59.2 days. For comparison, in 2021, the Pacific average was 95.14 days. In 2020, the average was 78.7 days, while in 2019 it was 88 days. The Pacific benchmark is 50 days.

Figure 4.41: Debtor Days

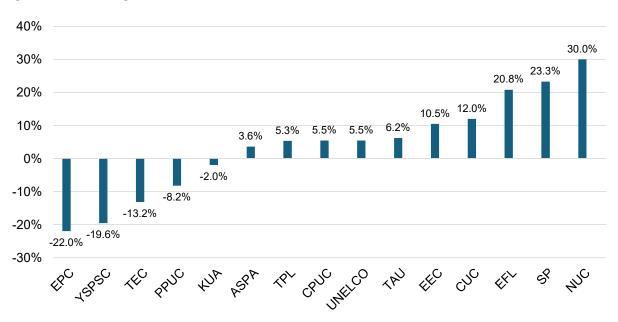

4.7.10 EBITDA Margin

EBITDA (Earnings Before Interest, Taxes, Depreciation and Amortization) Margin measures a utility's operating profitability before accounting for capital costs, financing expenses, and tax obligations, expressed as a percentage of revenue. This metric provides insight into core operational performance by focusing on earnings from regular business activities.

This indicator serves as a crucial measure of operational profitability and business performance. The metric enables utility managers to evaluate their core operations' effectiveness in generating earnings, independent of capital structure and tax considerations. Financial analysts use this information to assess operational efficiency and compare performance across utilities with different capital structures. Understanding EBITDA patterns helps utilities optimize their operational strategies while maintaining financial sustainability.

Figure 4.42 shows the EBITDA margin for the 15 utilities that provided sufficient data for the 2022 fiscal year. One outlier was excluded from the figure. For 2022, the EBITDA margins ranged from -26.9% to 39.0%, with a median value of 17.3%. The utility performance varies significantly across the region, with 11 utilities reporting positive EBITDA margins and three utilities reporting negative EBITDA margins.

Figure 4.42: EBITDA Margin


4.7.11 EBIT Margin

EBIT (Earnings Before Interest and Taxes) Margin measures a utility's operating profitability after accounting for capital costs but before financing expenses and tax obligations, expressed as a percentage of revenue. This metric provides insight into operational performance while considering the impact of infrastructure investments through depreciation and amortization.

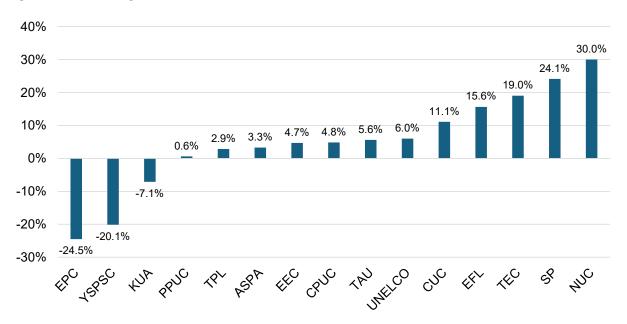
This indicator serves as an essential measure of operational performance that includes the impact of capital investment decisions. The metric enables utility managers to evaluate their operations' effectiveness while considering the cost of maintaining and replacing infrastructure assets. Financial analysts use this information to assess operational sustainability and compare utilities with different asset profiles. Understanding EBIT patterns helps utilities optimize their operational and investment strategies while maintaining financial viability.

Figure 4.43 presents the EBIT margin for the 17 utilities that provided data for the 2022 fiscal year, with two outliers excluded from the figure. For 2022, the EBIT margins range from -22.0% to 30.0%, with a median value of 5.4%. Ten utilities reported positive EBIT margins, while five utilities reported negative EBIT margins.

Figure 4.43: EBIT Margin

4.7.12 Profit Margin

Profit Margin measures a utility's overall profitability by expressing profit as a percentage of revenue. This comprehensive metric reflects the final financial performance after accounting for all operating costs, capital charges, financing expenses, and tax obligations.


This indicator serves as an important measure of financial performance and value creation. This KPI enables utility managers to evaluate their success in generating returns while fulfilling their service obligations. Senior leadership and stakeholders use this information to assess overall business sustainability and strategic effectiveness. Understanding profit margin patterns helps utilities optimize their comprehensive business strategies while maintaining appropriate returns.

Profit margin management in Pacific island utilities requires balancing financial sustainability with public service obligations. As often state-owned enterprises, these utilities must maintain adequate profitability while ensuring affordable and reliable power supply. Understanding this dual mandate helps establish appropriate performance targets and strategic priorities.

The interpretation of profit margins must consider the specific operating environment of Pacific utilities. Factors such as geographical isolation, weather exposure, and limited economies of scale can affect achievable returns. Regular analysis of profitability patterns helps ensure longterm sustainability while meeting community service requirements.

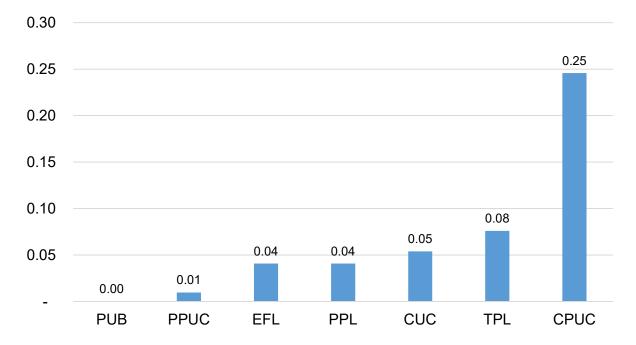
Figure 4.44 shows the profit margin for the 17 utilities that provided data for the 2022 fiscal year. Two outliers were excluded from the sample. For 2022, the profit margins range from -24.5% to 30%, with a median value of 4.8%. Twelve utilities reported positive profit margins, while three utilities reported negative profit margins.

4.8 Human Resources & Safety Indicators

This section presents the HR and Safety KPIs included in PRISM. Safety performance management in Pacific island utilities requires attention to specific regional challenges including remote operations, extreme weather conditions, and limited access to specialized medical facilities. These factors can influence both injury prevention strategies and recovery durations. Understanding these constraints helps develop appropriate safety programs and response protocols.

The interpretation of injury duration and frequency patterns must consider both direct and indirect impacts on utility operations. Beyond the immediate effect on workforce availability, extended injury durations or frequent accidents can affect team morale, productivity, and operational continuity. Regular analysis of duration and frequency trends helps identify opportunities for both prevention and response improvement.

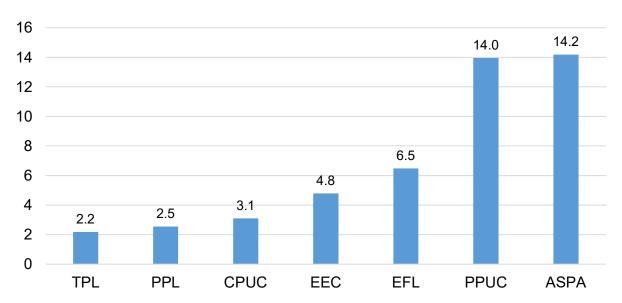
The relationship between safety investment and injury outcomes requires careful attention. While preventive measures may require significant resources, they often prove more cost effective than managing extended absences and replacement staffing. Clear documentation of injury impacts helps justify necessary investments in safety programs and equipment.


The implications of safety performance extend beyond immediate operational impacts to affect long-term workforce sustainability and organizational culture. Understanding these relationships helps utilities optimize their safety strategies and demonstrate their commitment to employee wellbeing. Regular review of injury metrics supports both program improvement and stakeholder communication about safety performance

4.8.1 Lost Time Injury Duration Rate Lost Time Injury Duration Rate (LTIDR) measures the average number of days lost per employee due

to work-related injuries. This KPI quantifies the severity of workplace injuries by calculating the duration of time employees are unable to work due to occupational incidents. This KPI serves as a critical measure of workplace safety performance and injury severity. The metric enables utility managers to evaluate the effectiveness of their safety programs and assess the impact of workplace injuries on workforce availability. Safety managers use this information to identify high-risk areas and guide prevention strategies. Understanding injury patterns helps utilities enhance their safety protocols while protecting employee wellbeing.

LTIDR for the 2022 fiscal year shows substantial variance across reporting utilities. Nine utilities reported LTIDR data, with values ranging from a minimum of zero days per employee to a maximum of 0.25 days per employee. The median LTIDR value across reporting utilities was 0.04 days. Two outliers were removed from this sample.


Figure 4.45: Lost Time Injury Duration Rate (Days/employee)

4.8.2 Lost Time Injury Frequency Rate Lost Time Injury Frequency Rate measures the number of lost-time injuries per million hours worked. This metric standardizes the frequency of workplace incidents resulting in lost time, enabling comparison across utilities of different sizes and operational scales. This indicator also serves as a fundamental measure of workplace safety effectiveness and incident prevention. The metric enables utility managers to evaluate their safety program performance against industry standards and organizational targets. Safety professionals can also use this information to assess risk management effectiveness and guide prevention strategies.

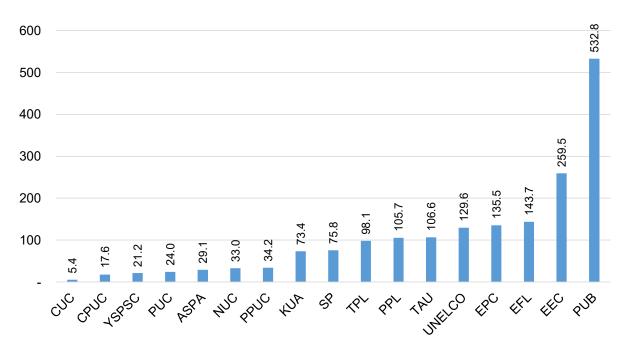
Seven utilities reported LTIFR values for the 2022 fiscal year. The LTIFR values show significant variation, ranging from a minimum of 2.2 incidents per million hours worked to a maximum of 14.2. The median value across reporting utilities was 4.8. One outlier was removed from this sample.

Figure 4.46: Lost Time Injury Frequency (Number of incidents per million hours)

4.8.3 Overall Labour Productivity Overall Labour Productivity measures the number of customers per employee. This indicator serves as a

fundamental measure of workforce efficiency and organizational productivity. The metric enables utility managers to evaluate staffing effectiveness and assess resource allocation across operations. HR planners use this information to guide workforce planning and development strategies. Understanding productivity patterns helps utilities optimize their staffing models while maintaining service quality.

Labor productivity management in Pacific island utilities requires consideration of their unique operating environment. Factors such as geographical dispersion, service territory characteristics, and limited automation opportunities can influence productivity levels. Understanding these constraints helps establish appropriate performance targets and improvement strategies.


The interpretation of productivity metrics must consider both efficiency and service quality objectives. While high customer-to-employee ratios may indicate efficient resource utilization, staffing levels must remain sufficient to maintain reliable service and respond to system needs. Regular analysis of productivity trends helps ensure appropriate balance between efficiency and operational effectiveness.

The relationship between workforce productivity and service delivery requires careful attention. Training investments, technology adoption, and process improvements can enhance productivity while supporting service quality. Clear documentation of productivity patterns helps demonstrate effective resource management while supporting necessary workforce investments.

Moreover, the economic implications of labor productivity extend throughout utility operations and affect both financial sustainability and service affordability. Understanding these relationships helps utilities optimize their workforce strategies and justify their staffing decisions. Regular review of productivity metrics supports both operational improvement and stakeholder communication about workforce effectiveness.

In 2022, 19 utilities provided information on their labour productivity. The labour productivity values show significant variation across utilities, ranging from a minimum of 5.4 to a maximum of 532.8. The median productivity was 74.6 customers per employee. One outlier was removed from this sample.

5. Findings and Recommended Priorities

The 2022 benchmarking data reveals several important trends and patterns across Pacific power utilities that merit attention.

5.1.1 Findings

- Generation Mix and Renewable Energy Transition. The data shows mixed progress in the region's transition to renewable energy. While some utilities have made significant investments in renewable technologies, the uptake remains uneven across the Pacific. Several utilities with the highest renewable energy share (Fiji, PNG, Samoa) rely primarily on legacy hydroelectric facilities rather than newer solar or wind installations. This suggests that the rate of new renewable energy deployment has been slower than anticipated despite ambitious targets set by many countries.
- Operational Performance. Operational efficiency continues to be a critical area requiring improvement. System losses vary widely, ranging from approximately 2.5% in better-performing utilities to over 30% in others. These losses represent a significant opportunity to improve financial performance without requiring major capital investments.
- **Financial Sustainability.** Almost all surveyed utilities show a gap between revenues and the estimated cost of service, though many are close to full cost recovery. This continues to challenge utilities' ability to invest in maintenance, system improvements, and renewable energy technologies. The utilities facing the largest gaps may require targeted interventions in tariff structures, operational efficiency, and governance.
- Governance and Management. The benchmarking data reveals a correlation between stronger governance practices and better financial performance. Utilities with more independent boards, performance-based executive compensation, and strategic planning processes tend to show improved returns on assets and better operational metrics.
- **Gender Representation.** While gender balance in the workforce shows improvement, with women representing 18% of the total utility workforce in 2022, representation remains highly uneven across different functional areas. Technical roles continue to be dominated by men, while finance, procurement, HR, and communications roles show higher female representation.

5.1.2 Priority Areas for Utilities

Based on the 2022 benchmarking results, we identify the following priority areas for Pacific power utilities:

1. Strategic Renewable Energy Integration

Pacific utilities should prioritize developing realistic, comprehensive energy transition roadmaps that:

- Match technology choices to each utility's specific circumstances and resources
- Plan systematically for battery storage requirements as renewable penetration increases
- Focus initial investments on opportunities with the highest fuel cost savings relative to capital expenditure

• Establish practical implementation timelines while maintaining progress toward renewable targets

2. System Loss Reduction

Utilities should make loss reduction a central focus by:

- Identifying and targeting the highest sources of both technical and non-technical losses
- Upgrading distribution infrastructure in high-loss areas
- Implementing modern metering systems to better track and reduce losses
- Establishing clear loss reduction targets with regular performance monitoring

3. Financial Performance Enhancement

To strengthen financial sustainability, utilities should focus on:

- Aligning tariff structures more closely with service costs while maintaining affordability
- Clarifying and formalizing any subsidy arrangements with government stakeholders
- Promoting customer energy efficiency to manage demand and costs
- Using competitive procurement to secure the most cost-effective power generation options

4. Governance Strengthening

To build on the demonstrated link between governance quality and utility performance:

- Enhance board independence and relevant expertise
- Implement performance-based management frameworks
- Develop robust strategic planning processes with measurable targets
- Improve transparency in financial and operational reporting

5. Technical Capacity Development

To address operational challenges, utilities should prioritize:

- Training staff on renewable technology integration and advanced grid management
- Participating in regional technical knowledge-sharing initiatives
- Implementing standardized maintenance protocols to improve reliability
- Collaborating across utilities to leverage specialized expertise

6. Data Quality Improvement

To enhance decision-making and future benchmarking, utilities should focus on:

- Standardizing data collection methodologies
- Implementing digital systems for performance tracking
- Conducting regular internal performance reviews against benchmarks
- Increasing the detail and accuracy of operational metrics

7. Gender Balance Advancement

To improve workforce diversity across all utility functions:

- Creating targeted pathways for women to enter technical roles
- Establishing professional development and mentoring programs
- Ensuring workplace policies promote inclusion and equity
- Setting specific goals for female representation at all organizational levels

5.1.3 Conclusion

The 2022 benchmarking results highlight both progress and persistent challenges across Pacific power utilities. While the region continues its journey toward renewable energy adoption and operational improvement, accelerated action is needed in the priority areas identified above. By focusing attention and resources on these key priorities, utilities can build on their existing strengths and address critical gaps, ultimately delivering more reliable, affordable, and sustainable electricity services throughout the Pacific region.

6. Glossary of KPIs

Availability Factor (AF):

Definition: The ratio of the actual time (after accounting for planned and unplanned outages) a power plant is available and generating electricity to the total time in a specific period. It is typically expressed as a percentage.

Importance: Measures the reliability and availability of the power plant. A high AF indicates the plant is consistently available to generate power, while a lower AF may suggest maintenance issues or frequent breakdowns. Tracking AF helps assess how well a power plant is operated and maintained.

Capacity Factor (CF):

Definition: The ratio of the actual electricity generation of a power plant to its maximum potential generation capacity over a specific period.

Importance: Shows how consistently a power plant produces electricity at its full capacity. A higher CF generally indicates better utilization of installed capacity. However, an extremely high CF might also suggest insufficient reserve capacity for maintenance or unexpected outages. The indicator is calculated separately by generation source (solar, wind, diesel, etc.) and by utility vs. Independent Power Producers (IPPs) to provide more specific insights.

Customers per Distribution Employee:

Definition: Measures the number of customers or connections served by each full-time equivalent distribution employee.

Importance: Evaluates labor productivity in the distribution segment of the energy utility. A higher number generally suggests greater efficiency of the distribution workforce.

Current Ratio:

Definition: A financial ratio that measures the utility's ability to pay its short-term obligations (current liabilities) using its current assets.

Importance: Indicates the utility's short-term financial health and liquidity. A ratio above 1 is generally desirable, suggesting the utility has enough liquid assets to cover its immediate liabilities.

Debtor Days:

Definition: Measures the average number of days it takes for the utility to collect debts (receivables) owed to it.

Importance: Assesses the efficiency of debt collection and cash flow management. A lower number of debtor days indicates more efficient collection processes and better cash flow.

Debt to Equity Ratio:

Definition: A financial metric that represents the ratio of total liabilities to equity.

Importance: Assesses the capital structure of the utility and its level of financial leverage. A high ratio suggests the utility relies more on debt financing, which can increase financial risk.

Distribution O&M Expenses per km Line Length:

Definition: Represents the total Operations and Maintenance (O&M) expenses incurred in the operation and maintenance of the distribution network, divided by the length of distribution lines in kilometers. Typically expressed in currency units per kilometer.

Importance: Assesses the cost efficiency of maintaining the distribution infrastructure. Tracking this helps understand the cost of maintaining the distribution network relative to its size.

Distribution Reliability (Events/100 km):

Definition: Measures the frequency of power outages or disruptions in the distribution network per 100 kilometers of distribution lines.

Importance: Quantifies the reliability of the distribution infrastructure and its impact on customers. A lower number of outage events indicates a more reliable distribution network.

Distribution Transformer Utilization Factor (TUF):

Definition: Measures the average load on distribution transformers in relation to their capacity, typically expressed as a percentage.

Importance: Assesses how efficiently distribution transformers are utilized to meet customer demands. Higher utilization generally implies more efficient capital expenditure in transformer capacity.

Earnings Before Interest and Taxes (EBIT) Margin (%):

Definition: A measure of the profitability of a utility's operations after accounting for costs to maintain the utility's asset base, but before accounting for debt and taxes.

Importance: Indicates the profitability of core operations before financing and taxation effects.

Earnings Before Interest, Taxes, Depreciation, and Amortization (EBITDA) Margin (%):

Definition: A measure of the profitability of a utility's operations before accounting for debt, taxes, depreciation, and amortization.

Importance: Provides a view of operational profitability and cash flow generation.

Forced Outage Indicator (%):

Definition: Represents the percentage of unplanned or forced generator outages compared to the total available time.

Importance: Measures the reliability of power plant equipment by quantifying the frequency of unexpected shutdowns. A lower percentage indicates better equipment reliability.

Generation Labor Productivity (GLP):

Definition: Measures the efficiency of labor in the power generation process, often expressed as MWh per employee.

Importance: Helps evaluate workforce efficiency in power generation and assess whether the production team is appropriately sized.

Generation O&M Costs per MWh:

Definition: Represents the total O&M expenses incurred in generating electricity, divided by the total electricity generated, typically expressed in currency units per MWh

Importance: Provides insights into the cost efficiency of power generation. Lower costs per MWh generally indicate better efficiency in managing generation expenses.

Generation Planned Outage Indicator (%):

Definition: Represents the percentage of planned outages for maintenance or upgrades of generators compared to the total available time.

Importance: Assesses the proactive maintenance and downtime scheduling of power plants. A balanced indicator suggests appropriate maintenance scheduling to prevent unexpected breakdowns.

Independent Power Producer (IPP) Generation (%):

Definition: Represents the percentage of electricity generation contributed by IPPs compared to the total generation.

Importance: Measures the share of power generated by third-party entities in the utility's supply mix. This can be relevant for understanding the utility's reliance on external power sources.

Load Factor (LF):

Definition: The ratio of the average load demand to the peak demand over a specific period, often a year.

Importance: Measures the usage of production capacity and indicates the balance between average and peak loads. A higher load factor generally indicates more efficient use of generation capacity.

Lost Time Injury Duration Rate (Days):

Definition: Measures the average duration of time lost per employee due to work-related injuries that result in lost working hours.

Importance: Quantifies the amount of time employees are unable to work due to injuries and provides insights into workplace safety and health. Lower duration rates indicate better safety performance.

Lost Time Injury Frequency Rate (LTIFR) (Number of Incidents per Million Hours):

Definition: Measures the frequency of work-related injuries that result in lost working hours per million hours worked by employees.

Importance: Assesses the rate of injury incidents in the workplace, helping evaluate safety performance. Lower frequency rates indicate a safer work environment.

Network Delivery Losses (%):

Definition: Represent the percentage of electricity lost during the delivery of electricity from distribution substations to end-users, including technical and non-technical losses.

Importance: Reflects the efficiency of the distribution network in delivering electricity to customers and highlights areas where losses can be reduced.

Operating Cost Recovery (%):

Definition: Measures the percentage of a utility's operating costs recovered through the revenue the utility earns.

Importance: Assesses the financial sustainability of a utility's operations. A recovery rate of 100% or higher indicates that the utility is covering its operating expenses.

Operating Ratio (%):

Definition: A financial metric that assesses the efficiency of the utility's operations by comparing the costs of goods and services (excluding depreciation) to the revenue earned.

Importance: Indicates how efficiently a business is operating in providing electricity service. An operating ratio below 100 indicates a profitable operation.

Overall Labor Productivity:

Definition: Measures the efficiency of the workforce by evaluating the number of customers served per employee.

Importance: Assesses the productivity of the entire workforce in providing services to customers.

Planned System Average Interruption Duration Index (SAIDI) (Minutes/Customer):

Definition: Measures the average duration of planned power interruptions per customer in minutes, calculated separately for transmission and distribution networks.

Importance: Quantifies the planned downtime experienced by customers on average due to scheduled outages for maintenance or upgrades.

Planned System Average Interruption Frequency Index (SAIFI) (Events/Customer):

Definition: Measures the average number of planned power interruptions per customer, calculated separately for transmission and distribution networks.

Importance: Quantifies the number of planned outages experienced by customers on average.

Profit Margin (%):

Definition: Measures the profitability of a utility's operations, inclusive of all costs.

Importance: Represents the overall profitability of the utility after all expenses.

Power Station Usage or Station Auxiliaries (%):

Definition: Represents the percentage of power generated that is used for station auxiliary systems.

Importance: Quantifies the proportion of electricity consumed for internal plant operations. Lower usage indicates greater efficiency in internal consumption.

Renewable Energy to Grid (%):

Definition: Represents the percentage of electricity generated from renewable energy sources compared to the total electricity supplied to the grid.

Importance: Assesses the contribution of renewable energy to the overall energy mix, reflecting the utility's progress towards sustainability goals.

Return on Assets (ROA) (%):

Definition: A financial indicator that measures the return generated from the utility's investment in its assets.

Importance: Indicates how efficiently management uses its assets to generate earnings. Higher ROA suggests better asset utilization.

Return on Equity (ROE) (%):

Definition: A financial metric that measures the financial returns on the owners' funds invested in the utility.

Importance: Assesses the profitability and performance of the utility in generating returns for its shareholders.

Specific Fuel Consumption for Diesel Fuel Oil (DFO) (kWh/liter):

Definition: Measures the amount of DFO required to generate a unit of electricity.

Importance: Assesses the fuel efficiency of diesel power generation. Higher kWh per liter values indicate better fuel efficiency.

Specific Fuel Consumption for Heavy Fuel Oil (HFO) (kWh/liter):

Definition: Measures the amount of HFO required to generate a unit of electricity.

Importance: Evaluates the fuel efficiency of power generation using HFO. Higher kWh per liter values indicate better fuel efficiency.

Specific Lubricating Oil Consumption (kWh/liter):

Definition: Measures the amount of lubricating oil consumed per unit of power generated.

Importance: Assesses the **efficiency of lubrication systems** in power generation equipment. Higher kWh per liter values indicate better efficiency.

Tariff Impact (USD):

Definition: Refers to the effect of the utility's tariff structure on different customer categories by calculating monthly bills for varying consumption levels.

Importance: Assesses how the utility's pricing policies impact the size of monthly bills for residential, commercial, and industrial customers. This helps understand affordability and tariff competitiveness.

Transmission Losses (%):

Definition: The percentage of electrical energy lost during the transmission of electricity.

Importance: Measures the efficiency of the transmission system in delivering power from generation sources to distribution substations. Lower losses indicate a more efficient transmission network.

Transmission Reliability (Outages per 100 km):

Definition: Measures the frequency of power outages or disruptions in the transmission network per 100 km of transmission lines.

Importance: Assesses the reliability and resilience of the transmission infrastructure. A lower number of outages per 100 km indicates a more reliable transmission system.

Unplanned SAIDI (Minutes/Customer):

Definition: Measures the average duration of unplanned power interruptions experienced by customers in minutes, calculated separately for transmission and distribution networks.

Importance: Quantifies the average amount of time customers are without electricity. Lower SAIDI values indicate better service reliability.

Unplanned SAIFI (Events/Customer):

Definition: Measures the average number of unplanned power interruptions experienced by customers, calculated separately for transmission and distribution networks.

Importance: Quantifies the average number of power outage events per customer. Lower SAIFI values indicate fewer service interruptions.

Utility Cost Breakdown (%):

Definition: Provides a detailed breakdown of the various cost categories incurred by the utility in its operations.

Importance: Helps analyze and understand the composition of the utility's expenses, such as fuel, O&M, labor, and other costs. This allows for identifying areas where cost management efforts can be focused.

PPA Member Utilities in 2022

1. AMERICAN SAMOA POWER AUTHORITY

Courier: Tafuna-Main Airport Road,

Pago Pago,

AMERICAN SAMOA 96799 Postal: P O Box PPB, Pago Pago, **AMERICAN SAMOA 96799** Telephone: + 1 (684) 699 1234 Facsimile: + 1 (684) 699 7067 Website: www.aspower.com

Mr. Wallon Young **Executive Director**

Telephone: +1 (684) 699-5282 Facsimile: +1 (684) 699-7067 Email: wallon@aspower.com

2. CHUUK PUBLIC UTILITY CORPORATION

Courier: 2nd Floor Aten's Building. Fais, Nepukos, Weno, CHUUK, FSM 96942

Postal: P O Box 910, Weno, CHUUK,

FSM 96942

Telephone: + (691) 330 2400 / 2476 Facsimile: + (691) 330 3259 / 2777

Website: www.cpuc.fm Mr. Kasio Kembo Mida Jr. **Chief Executive Officer** Email: Kembo.mida@cpuc.fm

COMMONWEALTH UTILITIES CORPORATION

Courier: Third Floor, Joeten Dandan Building,

SAIPAN, MP 96950 Postal: P O Box 501220 CK, 3rd Floor, Joeten Dandan Building, SAIPAN, MP 96950-1220

Telephone: +1 (670) 664 4282 Facsimile: + 1 (670) 235 5131 Website: www.cucgov.org Mr. Gary Camacho **Executive Director**

Email: gary.camacho@cucgov.org

ELECTRIC POWER CORPORATION

Courier: 5th Floor - Tatte Building, Sogi, Apia,

SAMOA

Postal: P O Box 2011, Apia,

SAMOA

Telephone: + (685) 65 500 Facsimile: + (685) 23 748 Website: www.epc.ws Contact: Faumui lese Toimoana

General Manager Telephone: + (685) 65540 Email: toimoanai@epc.ws

5. ENERCAL (Societe Neo-Caledonenne D'Energie)

Postal: 87, av.Du General De Gaulle, BP, C1, 98848 Noumea,

NEW CALEDONIA

Telephone: + (687) 250 250 Facsimile: + (687) 250 253 Website: www.enercal.nc CEO: Mr. Jean-Gabriel Faget **Chief Executive Officer** Email: jg.faget@enercal.nc

ENERGY FIJI LIMITED

Courier: 2 Marlow Street, Suva, FIJI ISLANDS

Postal: Private Mail Bag, Suva,

FIJI ISLANDS

Telephone: + (679) 322 4310

Facsimile: + (679) 331 1074 Website: www.efl.com.fj Mr. Hasmukh Patel **Chief Executive Officer** Email: hasmukh@efl.com.fj

ELECTRICITE DE TAHITI

Courier: Route de Puurai, 98702 Faa'a, Tahiti, FRENCH POLYNESIA Postal: BP 8021, Faa'a, Tahiti, FRENCH POLYNESIA Telephone: + (689) 86 77 00 Facsimile: + (689) 83 44 39

Website: www.edt.pf (in French) CEO: Mr. François-Xavier de FROMENT

Chief Executive Officer

Email: edt@edt.com

Email: François-

xavier.defroment@edt.engie.com

ELECTRICITE ET EAU DE CALEDONIE

Courier: 15 RUE Jean Chalier - PK4,

98800 Noumea, **NEW CALEDONIA**

Postal: 15 rue Jean Chalier PK4, BP F3 - 98848 Noumea Cedex,

NEW CALEDONIA

Telephone: + (687) 46 35 28 Facsimile: + (687) 46 35 10 Website: www.eec.nc

CEO: Mr. Philippe Mehrenberger

Director General

Email: Philippe.MEHRENBERGER@eec.nc

EEWF

BP 28 - Mata-UtU, HAHAKE 98 600 WALLIS & FUTUNA ISLANDS Telephone: + (681) 72 15 00 Facsimile: + (681) 72 11 96 Email: christophe.ruff@engie.com CEO: Mr. Christophe RUFF

GUAM POWER AUTHORITY

Courier: Gloria B. Nelson.

Public Service Building # 688 Route 15,

Mangiao, **GUAM 96913**

Postal: P O Box 2977, Hatgatna,

GUAM 96910

Telephone: + 1 (671) 648 3225 Facsimile: + 1 (671) 648 3290

Website: www.guampowerauthority.com

CEO: Mr. John M. Benavente

General Manager Email: gpagm@ite.net Contact: same as above

11. KOSRAE UTILITIES AUTHORITY

Courier: KUA Plaza, Tofol,

KOSRAE, FSM 96944

Postal: P O Box KUA,

Kosrae, FSM 96944

Telephone: + (691) 370 3799 / 3344 Facsimile: + (691) 370 3798 Website: www.kosraepower.com

CEO: Mr. Fred Skilling General Manager

Email: kuagm.kos@gmail.com
Contact: same as above

12. KWAJALEIN ATOLL JOINT UTILITY RESOURCES

Courier: 5819 Mon Kubok Weto,

Ebeye, Kwajalein.

MARSHALL ISLANDS 96970 Postal: P O Box 5819, Ebeye, MARSHALL ISLANDS 96970 Telephone: + (692) 329 3799 / 3798 Facsimile: + (692) 329 6722 Website: www.mecri.net/KAJUR.htm

CEO: Mr. Joseph Pedro General Manager Email: jpedro@kajur.net Contact: same as above

13. MARSHALLS ENERGY COMPANY

Courier: 1439 Lagoon Rd, Majuro, MARSHALL ISLANDS 96960 Postal: P O Box 1439, Majuro, MARSHALL ISLANDS 96960

Telephone: + (692) 625 3827 / 3828 / 3829 / 3507

Facsimile: + (692) 625 3397 / 5886 Website: www.mecrmi.net CEO: Mr. Jack Chong Gum Chief Executive Officer

Email: jack.chonggum@mecrmi.net

14. NAURU UTILITIES CORPORATION

Courier: Denig District,

NAURU

Postal: P O Box 210, Aiwo District,

NAURU

Telephone: + (674) 557 4038 Facsimile: (674) 444 3521 Website: www.nuc.com.nr Acting CEO: Mr. Anthony Dimapilis Actg. Chief Executive Officer

Email: anthony.dimapilis@nuc.com.nr

15. NIUE POWER CORPORATION

Postal: P O Box 29, Alofi,

NIUE

Telephone: + (683) 4119 / 4383 Facsimile: + (683) 4385

CEO: Vacant Mr. Andre Siohane

Director General, Infrastructure Ministry

Email: Andre.Siohane@mail.gov.nu Contact: same as above

16. PALAU PUBLIC UTILITIES CORPORATION

Courier: Oldiais Building, Madalaii,

Koror PALAU 96940

Postal: P O Box 1372, Koror,

PALAU 96940

Telephone: + (680) 488 3870 / 72 / 77

Facsimile: + (680) 488 3878 Website: www.ppuc.com CEO: Mr. Frank Kyota Chief Executive Officer Email: f.kyota@ppuc.com

17. PNG POWER LTD

Postal: P O Box 1105, Boroko 111, National Capital District, PAPUA NEW GUINEA Telephone: + (675) 324 3111/3332 Website: www.pngpower.com.pg

Managing Director Mr. Obed Batia

Email: OBatia@pngpower.com.pg

18. POHNPEI UTILITIES CORPORATION

Courier: Kapwaresou Street,

Kolonia, Pohnpei, FSM 96941 Postal: P O Box C, Kolonia, Pohnpei, FSM 96941

Telephone: + (691) 320 2374 Facsimile: + (691) 320 2422 Website: www.puc.fm CEO: Mr. Nixon T. Anson Chief Executive Officer Email: nanson@mypuc.fm

19. PUBLIC UTILITIES BOARD

Courier: Tatirerei Road, Betio, Tarawa,

KIRIBATI

Postal: P O Box 443, Betio,

Tarawa, KIRIBATI

Telephone: + (686) 25 201 / 26 929

Facsimile: + (686) 26 106 Website: www.pub.com.ki CEO: Mr. James Young Chief Executive Officer Email: ceo@pub.com.ki

20. SOLOMON POWER

Courier: Ranadi Industrial Area, Honiara,

SOLOMON ISLANDS
Postal: P O Box 6, Honiara,
SOLOMON ISLANDS
Telephone: + (677) 42480
Website: www.siea.com.sb
CEO: Mr. Donald Kiriau
Chief Executive Officer

Email: Donald.Kiriau@solomonpower.com.sb

21. TE APONGA UIRA O TUMU-TE-VAROVARO

Courier: Te Aponga Uira Tutakimoa,

Avarua, Rarotonga, COOK ISLANDS

Postal: P O Box 112, Rarotonga,

COOK ISLANDS

Telephone: + (682) 20 054
Facsimile: + (682) 21 944
Website: www.teaponga.com
CEO: Ms. Lesley Katoa
Chief Executive Director
Email: lesley@electricity.co.ck

22. TONGA POWER LTD

Courier: Corner Taufa'ahau & Mateialona Roads, Kolofo'ou,

Nuku'alofa,

KINGDOM OF TONGA

Postal: P O Box 429, Nuku'alofa, KINGDOM OF TONGA Telephone: + (676) 27 390 Facsimile: + (676) 23 047

Website: www.tongapower.to CEO: Mr. Finau Moa

Chief Executive Officer

Email: fmoa@tongapower.to

23. TUVALU ELECTRICITY CORPORATION

Courier: Funafuti,

TUVALU

Postal: P O Box 32, Funafuti,

TUVALU

Telephone: + (688) 20 352 / 358 Facsimile: + (688) 20 351 Website: www.tectuvalu.tv CEO: Mr. Mafalu Lotolua

General Manager Email: mlotolua@ tectuvalu.tv

Or:

Mafaluloto2@gmail.com

Contact: same as above

24. UNELCO VANUATU LTD

Courier: Union Electrique Du Vanuatu Ltd

Ru de Paris, Boite Postale 26,

Port Vila, VANUATU Postal: P O Box 26,

Port Vila, VANUATU

Telephone: + (678) 26 000 Facsimile: + (678) 25 011 Email: unelco@unelco.com.vu Website: www.unelco.com.vu CEO: Mr. Frederic PETIT Managing Director

Email: frederic.petit@engie.com

25. YAP STATE PUBLIC SERVICES CORPORATION

Courier: Power Plant Road # 1, Colonia,

Yap State, FSM 96943

Postal: P O Box 667, Colonia, Yap,

FSM 96943

Telephone: + (691) 350 4427

Facsimile: + (691) 350 4518 9power plant)

CEO: Mr. Faustino Yangmog

General Manager

Email: sapthiy@gmail.com