







**KEY FIGURES** 





~280,000 inhabitants



118 islands & atolls



65 isolated distribution networks



Target: 75% renewables by 2030 (law)

Current reality: 93% imported diesel



#### AN URGENT NEED OF STRUCTURAL TRANSFORMATION

**OLD MODEL** (BEFORE)

**SINGLE UTILITY** 

(Generation, Distribution)



**NEW MODEL** (NOW)

**MULTIPLE ACTORS:** 

(New grid operators, IPPs, Self-consumption projects)

NEW CHALLENGES

- > Fragmented grids, no automation, unmanaged assets
- > Aging infrastructure
- > Ambitious renewable energy targets
- > New operational responsibilities but lack of hybrid management skills
- > Grids not adapted to new needs (sizing, operations, protections..)
- > Need to evolve the laws (grid code)



### FROM A SINGLE VERTICALLY INTEGRATED UTILITY...

### **BEFORE**

**ONE SINGLE UTILITY - EDT** 





Responsible for **production & distribution**, **balance supply/ demand** 

TSO - TEP



Measurement and verification only



#### **BALANCE SUPPLY/DEMAND**

Ensured by EDT mostly with diesel and hydro



#### **SOFTWARE TOOLS**

**SCADA** 



#### **MICROGRID MANAGEMENT**

Reactive mode, real-time monitoring and control



### **PEOPLE** (operational dispatch)

Diesel operations mode only, robust but « easy » black start procedures



### ... TO SILOED MICROGRIDS & FRAGMENTED INFRASTRUCTURES

### **NOW**

### **MULTIPLE UTILITIES / LOCAL OPERATORS**

SPL Te Uira Api No Te Mau Motu, EPIC Te Ito Rau No Moorea Maiao, CODIM...









Responsible for **production & distribution**, **balance in the grid** 

TSO - TEP



Responsible for measurement and verification,

+ balance in the grid in Tahiti





### ... TO SILOED MICROGRIDS & FRAGMENTED INFRASTRUCTURES

### **NOW**

### **MULTIPLE UTILITIES / LOCAL OPERATORS**





SPL Te Uira Api No Te Mau Motu, EPIC Te Ito Rau No Moorea Maiao, CODIM...





Responsible for **production & distribution**, **balance in the grid** 

TSO - TEP



Responsible for measurement and verification,

+ balance in the grid in Tahiti



#### **BALANCE SUPPLY/DEMAND**

Operators' responsibility (with BESS/diesel gensets)



#### **SOFTWARE TOOLS**

Need of advanced solutions: SCADA+ EMS



#### **MICROGRID MANAGEMENT**

Forward-looking mode: forecasting consumption, generation and weather to optimize the use of renewables and provide grid stability



#### **PEOPLE** (operational dispatch)

Need of new skills improvement: hybrid management



### **WHY IT WORKS**

### FROM DEMAND RESPONSE TO HYBRID MANAGEMENT





BASED ON YEARS OF EXPERTISE

ADAPTIVE FOR EVERY ASSET & CONSTRAINT

24/7 MONITORING & CUSTOMER SUPPORT

**CYBER-SECURE BY DESIGN** 



### **ENERGY MANAGEMENT PLATFORM: UNIQUE & SCALABLE SOLUTION**

#### LEVERAGING FORECASTING FOR ENERGY FLOW WHILE ADJUSTING DECISIONS FOR STABILITY





Uses advanced forecasting and AI to maximize site profitability and manage renewables uncertainties

(EMS)

- > Steers the system toward the customer's defined objective with precision and efficiency.
- Optimizes operations based on weather, production, consumption forecasts, through machine learning and advanced optimization models

REAL-TIME POWER CONTROLLER (PMS)

- Adjusts energy decisions in real time, addressing discrepancies between forecasts and actual conditions
- Enhances system stability and reliability
- Dynamically adapts energy management and respects predefined site constraints
- > Ensures **continued operation** even if communication is lost



#### -<del>X</del>-TAHUATA MICROGRID [Gensets + PV + BESS] 1.5 MW Fatu Uku Hiva Oa Motu Nao MARQUISES **HUAHINE MICROGRID** -14-[Gensets + PV + BESS] 16 MW Îles du Désappointemen TAHA'A HPP 2 sites [PV + BESS] 600 kW Takaroa Îles du Roi Georges Puka Puka ÎLES SOUS LE VENT CARREFOUR C&I PROSUMER Motu One [PV+ BESS] 1.6 MW PV + 1.3 MW BESS ÎLES DU VENT Tatakoto Pukarua **TUPAP1 C&I PROSUMER** ÎLES DE LA SOCIÉTÉ Reao [PV+ BESS] 2 MW PV + 2.6 MW BESS RAIATEA & TAHA'A MICROGRID 20 MW PV+ 20 MW BESS [Gensets + PV + BESS] Îles du duc de Gloucester RURUTU HPP [PV+ BESS] 210 kW -14-RURUTU MICROGRID Fangataufa Mont du Lotus

### **FRENCH POLYNESIA PROJECTS**

### **SMART GRID TRANSFORMATION**



Microgrid off-grid projects



Grid-connected prosumer projects



Renewable developer projects (HPP = Hybrid Power Plant)







### TEP - TAHITI'S TRANSMISSION SYSTEM OPERATOR (TSO)

### **CONTEXT AND CHALLENGES**



#### A STRUCTURAL CHANGE

Emergence of IPPs



EDT no longer as both producer and neutral system operator

TEP becomes the responsible for grid balancing



- 100 MW peak demand
- 300 km of lines 24 substations

#### THAT BRINGS NEW CHALLENGES FOR TEP

- Fragmented assets & limited visibility (no control on IPPs' PV+BESS)
- > Lack of centralized control over generation assets
- > **SCADA**: manual and complex operations, real-time data only
- > Risk of future congestions (generation concentrated on one side of island)
- Lack of forecasting & centralized reserve management (storage needed for stability)
- > Need advanced, tailor-made solutions & experienced partners for strategic support
- Grid code: complex & misaligned with TSO/IPPs needs



### TEP - TAHITI'S TRANSMISSION SYSTEM OPERATOR (TSO)

### STEP BY STEP SUPPORT

#### PHASE 1

#### **DASHBOARD AND ALARMS:**

 Monitoring with measurement and verification



GRID CODE AND PPA COMPLIANCE

#### **SCENARIO - PHASE 2**

#### **PROGRESSIVE AUTOMATION:**

- Automating exchanges between the TSO and IPPs
- Dynamic optimization and automatic threshold management
- > New assets integration

#### **REDUCING GAPS**

Balancing Supply and Demand



#### **AUTOMATION OF OPERATIONS**

#### **SCENARIO - PHASE 3**

### DYNAMIC OPTIMIZATION OF THE ENTIRE NETWORK:

- Knowledge of the consumption and production of all network assets
- PV production forecast
- Centralized reserve management via BESS
- Dynamic optimization and automatic threshold management

#### **REDUCING GAPS**

Balancing Supply and Demand



**ALL PROBLEMS SOLVED** 







### TE UIRA API NO TE MAU MOTU: LOCAL OPERATOR

### **CONTEXT AND CHALLENGES**



# A local public operator managing concessions on several remote islands: Huahine, Raiatea, Taha'a, Rurutu, Tubuai



#### **MAIN CHALLENGES**

- Inherited a fragmented system of ageing diesel gensets
- > No SCADA no visibility of the generation/distribution grid.
- > Manual operations tedious and troubleshooting complicated
- > High diesel costs
- Financial pressure to make renewables viable
  (ensuring that the cost per kWh is cheaper than operating solely on diesel)
- > Limited operational expertise on hybrid systems

#### **URGENT NEED TO:**

- Standardize the software (SCADA as first step)
- > Centralize multi-island operations
- Enable remote control & monitoring



### TE UIRA API NO TE MAU MOTU - LOCAL OPERATOR IN HUAHINE

### FROM DIESEL GENSETS TO A HYBRID SYSTEM: A PHASED ENERGY TRANSITION

The energy transition has been launched on Huahine. By combining solar and BESS, the island will **cut fuel use by nearly 50%.** 

### **PHASE 1: Laying the Foundations**

- >Technical audit of the existing thermal plant and network assets
- >Recommendations for equipment and network upgrades (grid connection point, diesel controllers, optical fiber, circuit breakers..)

### PHASE 2: PMS/SCADA deployment

>Deployment of PMS/SCADA to automatically and remotely manage the thermal power plant and prepare for hybrid integration

### **PHASE 3: Smart Integration + EMS**

>Upcoming: Installation of EMS to orchestrate the **full hybrid system** (PV + BESS + diesel gensets) for optimal performance and grid stability



# Pool

### **METHODOLOGY**

PHASE 3 **NEED OF GRID** STABILITY Manage automatically all PHASE 2 your assets, including renewables, BESS, IPPs PHASE 1 Integrate more RES into your system Dynamic dispatch and control of network stability **ENABLEMENT MODERNISE YOUR THERMAL POWER PLANT ACTIONS TO OPTIMISE AND MANAGE THE ENTIRE NETWORK** Assess the needs and establish a plan for more RES integration Monitor and control your assets Automate your operations Upgrade your power plant CONTROL AND AUTOMATION **OPTIMISE OPERATIONS** 

COMPLEXITY



### **EXPERTISE FROM CONSULTING TO OPERATIONS**

### FOR PRODUCERS, GRID OPERATORS AND CONSUMERS















**DESIGN** 

**CONSULTING & ENGINEERING & AUDIT** 

**OPTIMISE** 

**ENERGY MANAGEMENT & OPTIMISATION SOLUTIONS** 

**OPERATE** 

**O&M AUTOMATED OPERATIONS TECHNICAL SUPPORT** 



**All assets** 

Tailor made

All contexts

**Agnostic** 

Scalable

**Automated** 







- Digital transformation in power systems is not an optional add-on for improving efficiency, sustainability, and especially resilience: it's a must.
- Traditional models are no longer sufficient: reactive management cannot effectively address the challenges posed by intermittent renewables.
- Embracing digital transformation enables long-term cost reductions through decreased maintenance and reduced reliance on diesel fuel.





### **FRENCH POLYNESIA LESSONS:**

- Start with a holistic understanding of the technical, operational, and human landscape.
- Deploy **flexible**, **scalable** platforms that can evolve with changing needs and market structures.
- Build local capacity so operators can own and sustain their transformation journey.

SMART GRIDS ARE NOT ONLY ABOUT TECHNOLOGY - THEY ARE ALSO ABOUT BUILDING SYSTEMS THAT CAN LEARN, ADAPT AND EVOLVE TOGETHER WITH THE PEOPLE WHO OPERATE IT.





### A GLOBAL INDEPENDANT PLAYER

**CONTACT@ENERGY-POOL.EU** 

## **THANK YOU!**

Agnieszka RYCHLICKA

BUSINESS DEVELOPMENT MANAGER APAC

(Software & Microgrids)

agnieszka.rychlicka@energy-pool.eu

+33 789 214 162



TÜRKIYE

**NETHERLANDS** 

**GERMANY** 

KSA

SPAIN

MOROCC

IVORY COAS

**ITALY** 





