

The Energy Transition Model (ETM)

to model multi-sectoral energy transitions across energy supply chains in PICTs

Edoardo Santagata PhD Candidate, The University of New South Wales | Collaboration on Energy and Environmental Markets

ENERGY MODELLING PRINCIPLES

Energy Supply Chain

RESOURCES

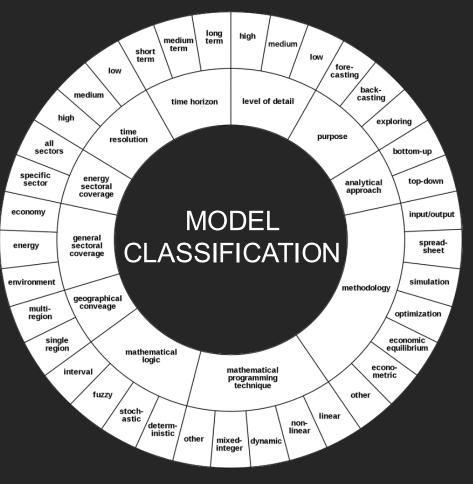
CONVERSION

CONSUMPTION

DELIVERY

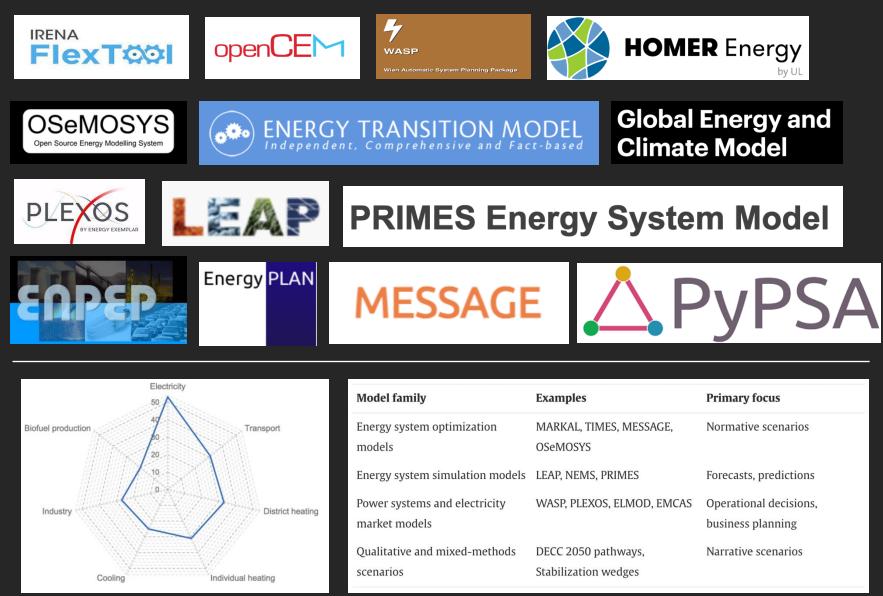
MODELLING: simplified & organised model structures to represent every step of the supply chain

Accurately represent future scenarios Provide flexible options to forecast demand and the uptake of specific technologies



Assist with energy planning & policy making

Assess the outcomes of specific technologies and trends to make better decisions regarding capacity and policy mechanisms


Track progress against strategic targets Determine how likely an energy system is to meet current targets relating to specific technologies and emissions

REVIE

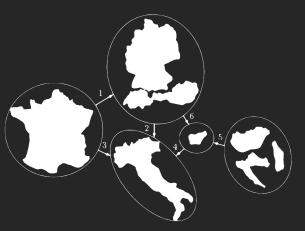
- of available modelling tools to investigate energy transitions Challenges encountered
- Lack of energy data for the Pacific
- Modelling options do not reflect Pacific energy challenges
- Complex user input requirements
- Limited case study applications to test practicality for planning
- Restricted system compatibility
- Barriers to accessibility
- Developed without stakeholder consultation
- Lack of adaptable dashboards
- Requirement of extensive specialised training
- Selective outputs

Some examples...

From 'Energy systems modelling for twenty-first century energy challenges' (Pfenninger et al., 2014)

MODEL SCORING

TOOL	Key Model Factors								
	Intuitive Interface	Integrated Database	In-built Training	Simulation- based	Pragmatic Outputs	Open- source			
OSeMOSYS	Х	~	Х	\checkmark	\checkmark	\checkmark	3.5		
TIMES	Х	Х	Х	\checkmark	\checkmark	\checkmark	3		
Energy Transition Model (ETM)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	6		
Global Energy and Climate Model (GEC)	N/A	X	Х	\checkmark	\checkmark	X	2		
LEAP	Х	X	~	\checkmark	\checkmark	~	3		
PLEXOS	Х	\checkmark	Х	\checkmark	\checkmark	X	3		
MESSAGE	Х	X	Х	\checkmark	\checkmark	~	2.5		
PRIMES	N/A	X	Х	Х	\checkmark	X	1		
EnergyPLAN	Х	X	Х	\checkmark	\checkmark	\checkmark	3		
ENPEP-BALANCE	Х	Х	~	~	~	\checkmark	2.5		

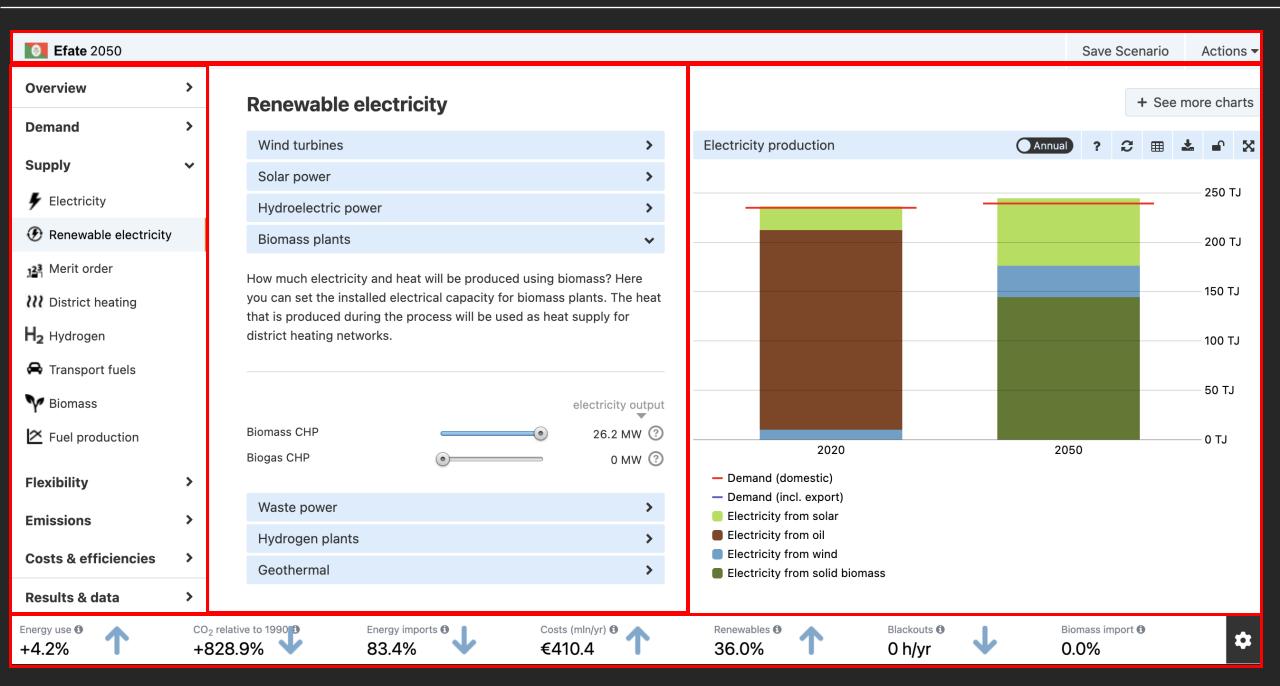

Energy Transition Model (ETM)

Quintel

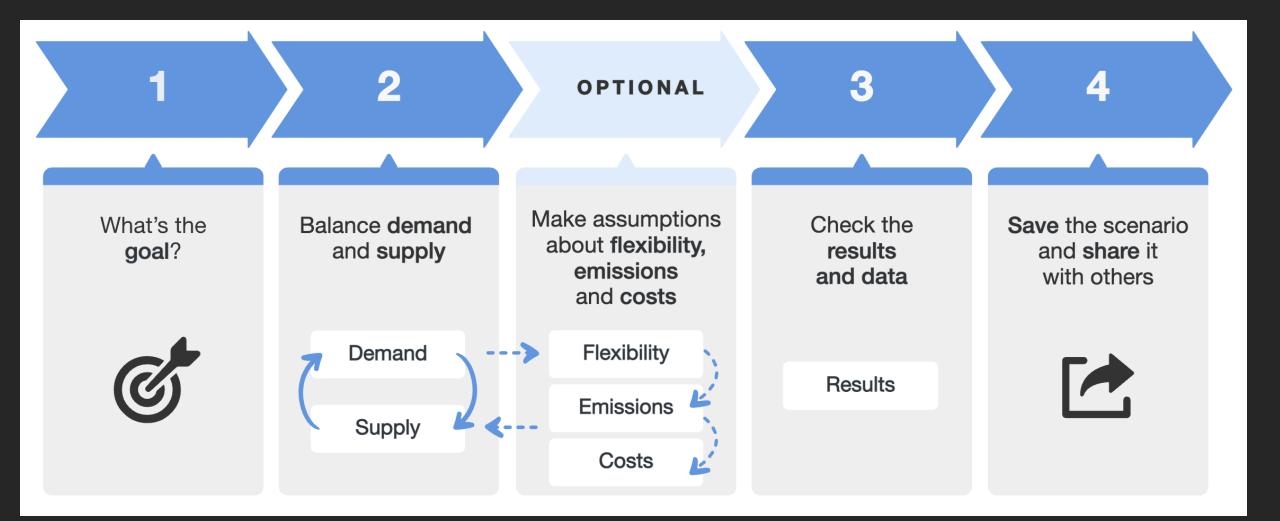
Open-source multi-sectoral simulation model with interactive dashboard to produce future energy scenarios and transition plans https://energytransitionmodel.com/

TRANSITION MODEL

Available for 28 countries (EU + Singapore)



- Adaptable for Pacific
- Extensively tested
- Interactive interface
- Minimal training required
- Multiple output formats (reports, data, infographics)


Key characteristics

- Copper-plate model (the "island assumption")
- Includes an open-source dataset manager to blend tools with databases
- Considers aspects of the energy supply chain that are crucial to the Pacific (e.g. imports, security of supply)
- Auto-adjustment for balance consistency (e.g. industry)
- Extensive documentation available
- Widely used in EU for policy making and strategic plan development with success
- Interactive and adaptable interface
- Minimal training required and highly adept to being used for technical/planning capacity development
- Supports detailed analyses regarding capacity expansion, grid stability, technology deployment, infrastructure requirements, and decarbonisation
- Integration with variety of Python and Excel tools
- Ease of maintenance via data collection framework
- Multiple output formats (charts, reports, raw data, infographics)

A look at the dashboard...

SCENARIO CREATION WORKFLOW

Efate 2050						Save S	Scenario Actions
Overview	>	Welcome!					+ See more charts
Demand	~	Weicome:					
🏠 Households		How does the Energy Transition Model work?	Workflow				¢; 🖌 🏹
######### 24%		The ETM helps you explore future energy scenarios for a region of your	X X	(management)		V	1
Buildings		choice. The model is easy to use by following these steps:	1	2	OPTIONAL	3	4
🖨 Transport		1. Before you start, think about the goal of your scenario, then you			A		-
70%		know what to focus on. 2. The menu on the left displays all sectors that either use (Demand)	What's the	Balance demand	Make assumptions about flexibility,	Check the results	Save the scenario and share it
Industry		or produce energy (Supply). For each sector you can use sliders	goal?	and supply	emissions and costs	and data	with others
- Agriculture		to indicate what you think the future will be like. You can easily undo your changes by resetting your slider, so just play around!	-	🚽 Demand 🔨	> Flexibility		
0%		For example, you can start with space heating in households or	G		Emissions 4	Results	
+ Other		explore transport and mobility.		Supply 🦉 🔇	Costs		
0%		Optional: advanced users can use the Flexibility section to match					
~		demand and supply on specific timescales, the Emissions section for assumptions on other greenhouse gas emissions or CCUS and					
Supply	>	the Costs & efficiencies section for cost assumptions or					
Flexibility	>	efficiency adjustments.					
		3. The ETM will immediately show you the result of your actions: at					
Emissions	>	the bottom of your screen, indicators show the impact on the entire system (e.g. CO ₂ reduction, energy savings, costs). On the					
Costs & efficiencies	>	right, charts display specific information for each section of the					
		model. If you lock the chart it will remain visible as you navigate					
Results & data	>	through the model. You can add charts by clicking "see more charts" (top right).					
		For a more complete overview of results you can take a look at					
		the scenario report under the header Results & data. You can					
		always return to a certain part of the model to make more					
		changes.					
		4. You can share your scenario with others by saving your scenario:					
Energy use 🛈	co	2 relative to 1990 () Energy imports () Costs (mln/yr) ()	Renewables	O Bla	ckouts 0	Biomass	import 0
-0.2%	+8	374.3% 92.5% €393	21.4%	n/	а	0.0%	ε

Г

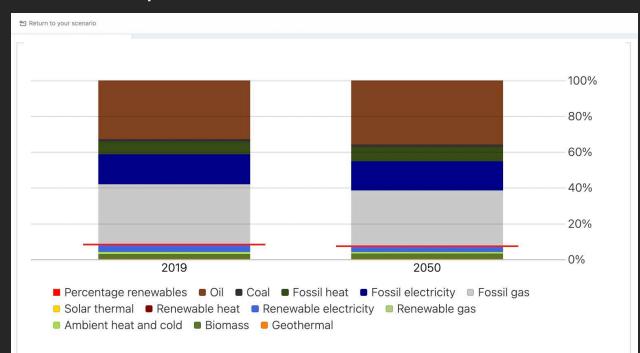
2

AVAILABLE OUTPUTS

Charts & tables

Electricity network capacity and peaks

	Peak load, present (MW)	Usable capacity, present (MW)	Peak load, future (MW)	Usable capacity, future (MW)	Required additional network (MW)
LV net	7,455.19	9,940.25	8,425.02	9,940.25	0
LV MV transformer	7,455.19	9,940.25	8,425.02	9,940.25	0
MV net	7,902.66	10,536.88	10,350.26	10,536.88	0
MV HV transformer	7,902.66	10,536.88	10,350.26	10,536.88	0
HV net	10,437.07	13,916.09	12,286.85	13,916.09	0
Interconnection net	-	0	0	0	0
Offshore net	-	0	0.85	1	1

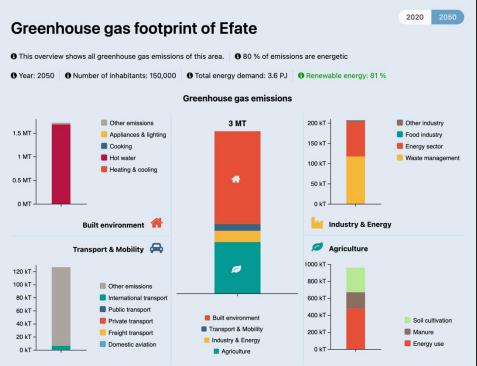

U IVI VV Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

- Total supply to grid
- Battery charge
- Direct supply to grid

Curtailed

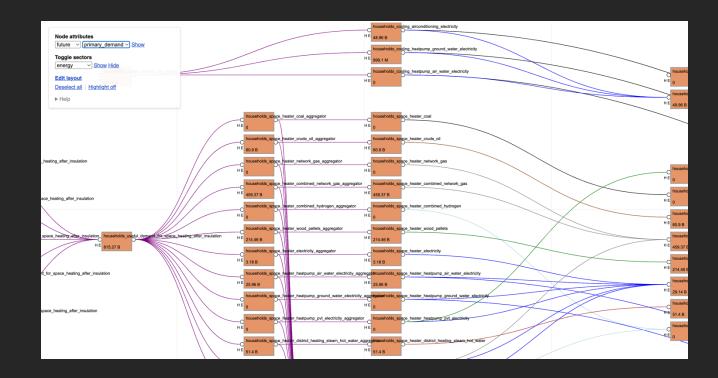
- Battery discharge to grid

Scenario report



Renewability percentage of final energy demand.

ZUDU: Leanninule »


AVAILABLE OUTPUTS

Greenhouse gas footprint infographic

* Energy use is expressed in joule (J). Greenhouse gas emissions are expressed in tonne (T) (CO₂ equivalent). More information about this sheet can be found in the ETM documentation.

Detailed energy & emissions flows

SCENARIO MANAGEMENT

➢ My Scenarios	100% Electric Vehicles + Clean Shipping
Scenarios	<u>← Back to my scenarios</u>
My Transition Paths	100% Electric Vehicles + Clean Shipping
🔟 Trash	Efate 2040 Last updated 29 June, 2024 15:05
	O Public ▼ Options ▼ Copy link ▼
	Decarbonising transport scenario
	Default
	Efate 2050 • Last updated 17 days ago

TRANSITION PATHWAYS

Final dema	Edit 2030 scenario)							Bar chart
6000 PJ									
5000 PJ	Overview	>	Renewable electr	icity					°
	Demand	>	Wind turbines	-	>	Electricity production	Annual ? 🌣 🗄	1 🕹 🖝 🗙	
4000 PJ	Supply	~	Solar power		~				
	🐓 Electricity		Is solar power the future? Ho	ow much do you want to p	roduce?			1.5 EJ	°
3000 PJ	Renewable electricity	/	The choices you made in the	- "Demand" section deter	mine the number				
	123 Merit order							1 EJ	
2000 PJ	III District heating		build solar PV panels in the ' 'solar panels' section of build		ouseholds and the				
	H₂ Hydrogen		Here, you can build central s	solar power plants, on land	Ifills and terrain			0.5 EJ	
000 PJ	🖨 Transport fuels		unfit for other purposes.					0.0 23	
	Y Biomass								
	Fuel production				electricity output	2019	2030	0 EJ	
0 PJ 2019	Flexibility	>	Solar PV plants Solar PV plants with battery system	• <u> </u>	17,438 MW ③ 0 MW ③	 Demand (domestic) Electricity from biogas 	 Demand (incl. export) Electricity from solar 		2050
	Emissions	>	Concentrated solar power	•	0 MW (?)	 Electricity from waste Electricity from hydropower 	Electricity from oil Electricity from wind		
	Costs & efficiencies	>	Hydroelectric power		>	 Electricity from import Electricity from greengas Electricity from coal gas 	 Electricity from solid biomas Electricity from natural gas Electricity from coal 	5	2050
			Biomass plants		>				
Agriculture			Waste power		>				113.07 PJ -
Buildings	Finish editing								635.79 PJ

Energy Transition Model
Dataset Manager

General

Households

Buildings

Transport

Agriculture

Other energy demand

Energy production

Hourly curves

L Default curves

 \sqcup Weather year curves

Industry

Arawa

i Information 🛛 😵 English 👻

LOG IN

х

Efate

Created by Quintel

The ETM calculates the hourly production and demand of gas, electricity, heat and hydrogen. Hourly profiles are required for this calculation. On this page you can find the curves that are used by default in the ETM and that correspond with the starting year. As you can see below, there are different types of profiles: supply and demand profiles. Often the same profiles are used for a region within a country as the country itself. Do you want to use other profiles in your ETM scenario? This is possible and you can do this in the ETM on the page Flexibility -> Modify profiles.

Supply - Electricity

Hydropower (river)

▼ Solar PV

Solar PV

datasets/VUNH5_efate/curves/weather/default/solar_pv_profile_1.csv

Version history

26 June 2024, KoenvanB

Update pv roof surface area households & buildings for RES11 (#3064)

* Update pv roof surface area households & buildings

* Update RES11 database and delete wrong RES11_nl2019 database

Wind coastal

Wind inland

Wind offshore

Supply - Heat

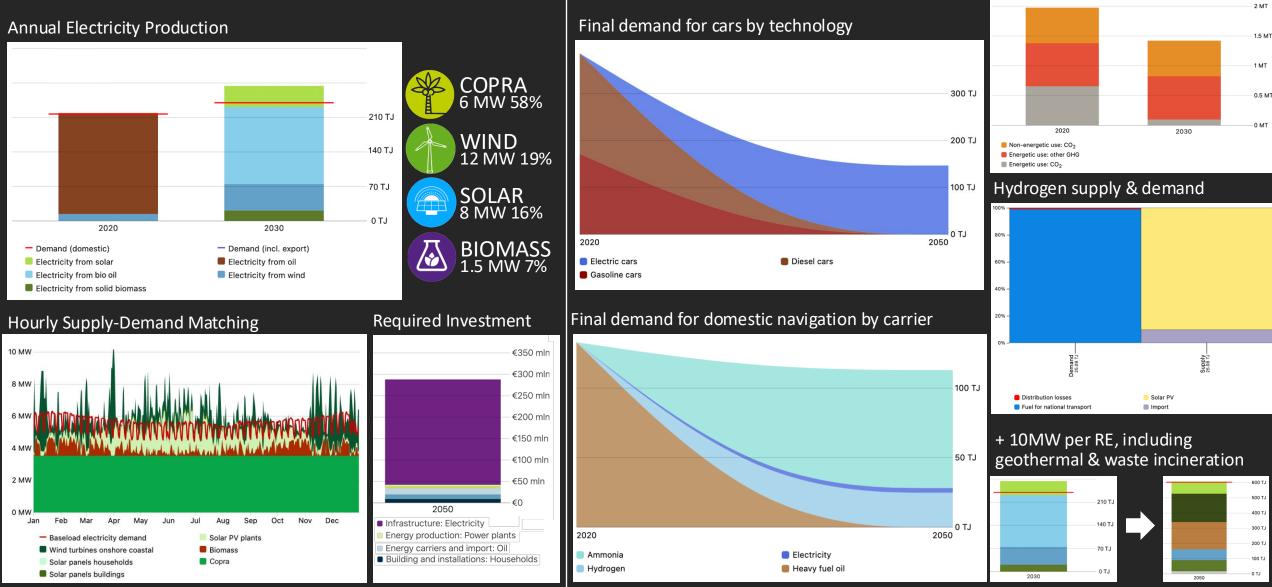
Geothermal heat

Solar thermal

Demand - Buildings

Appliances

Tonga Nukujalofa


Scenario Examples

100% Renewable Electricity by 2030 - 🚺 Efate

And extending into 2050...

Total emissions

1.5 MT

APPLICATIONS FOR PICTs

Policy Development

Assist in developing effective energy policies and goals to support energy transitions

Geographic Fragmentation

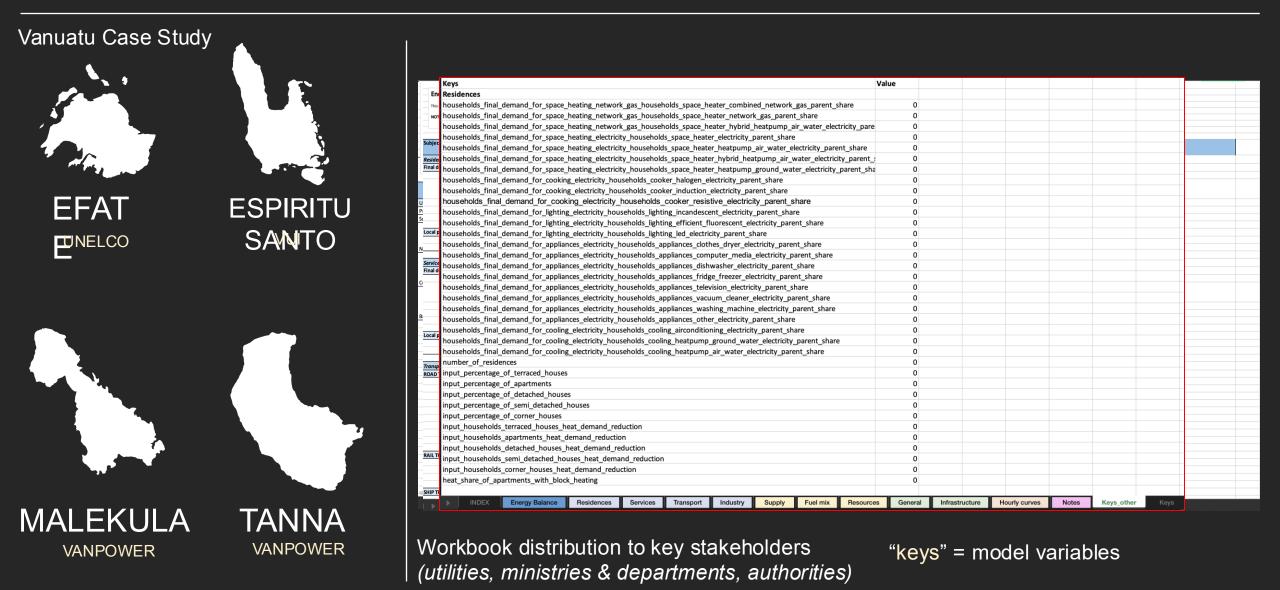
Reflect multi-island context of Vanuatu and develop strategies for independent islands to form a national strategy

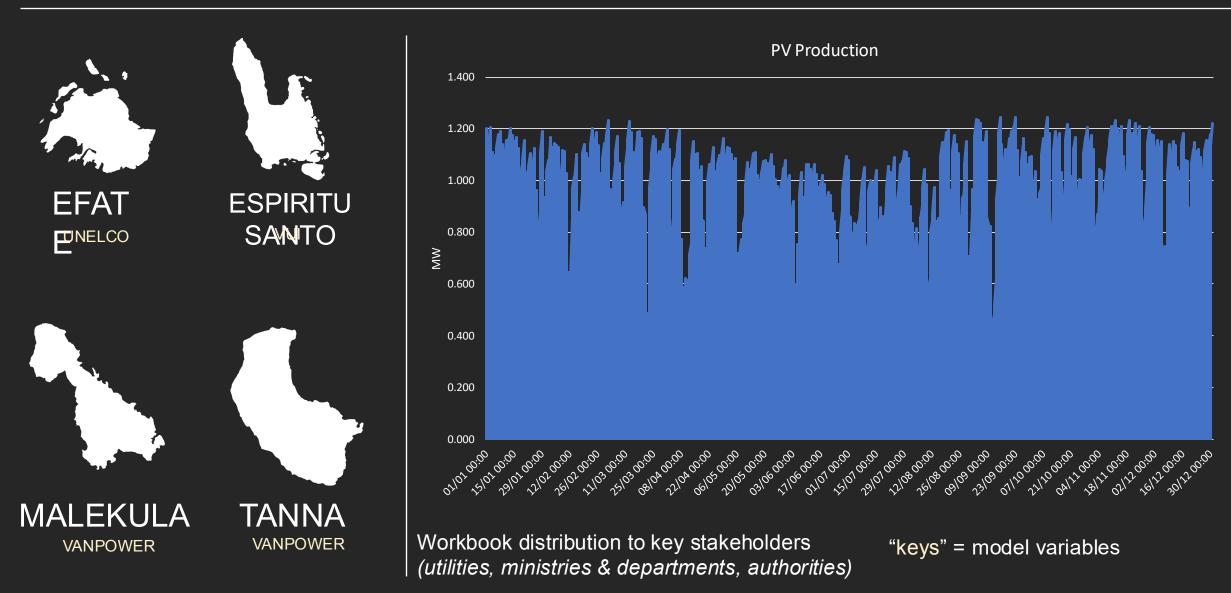
Energy Independence

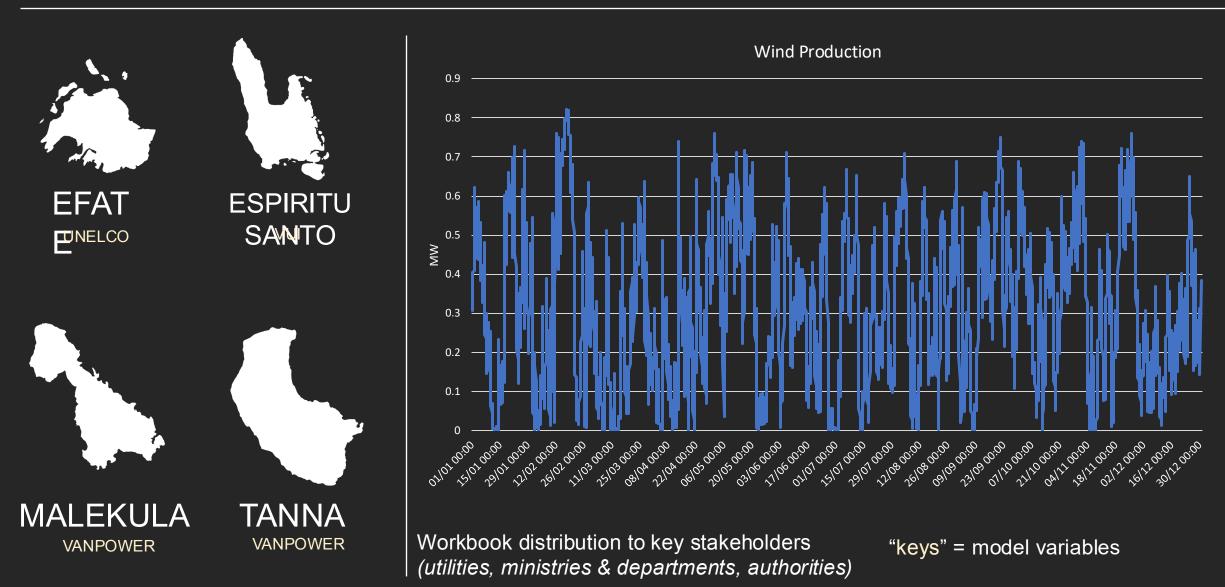
Identify opportunities reduce need for imports and expand local energy resource utilisation + REGIONAL STRATEGY

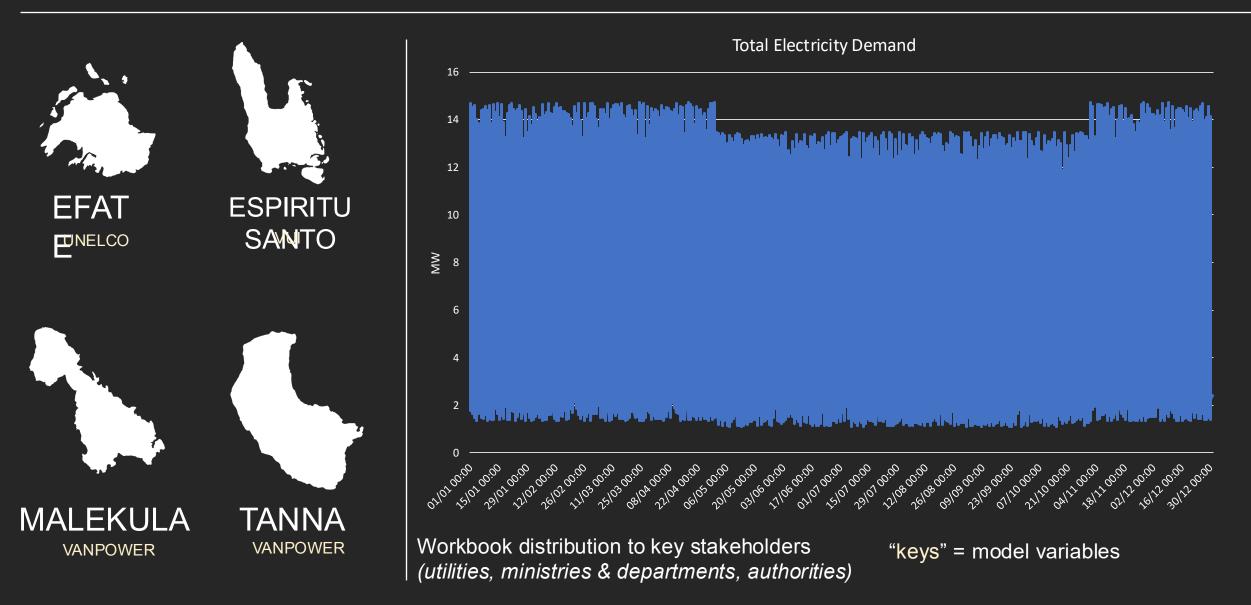
Resilience & Security

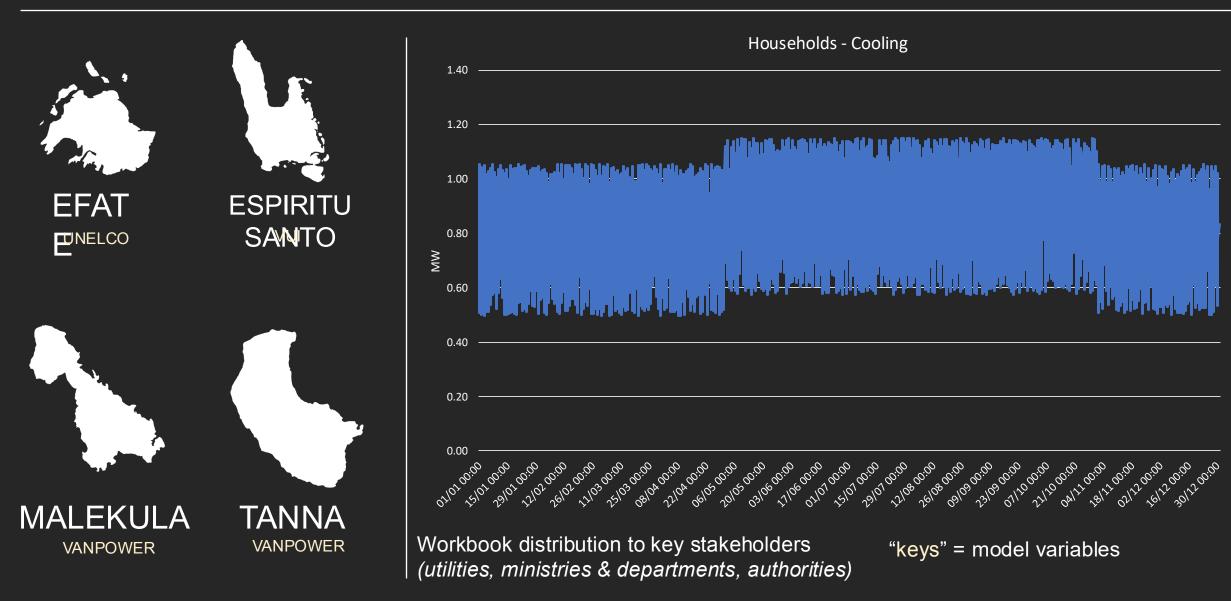
Understand implications and opportunities associated with carrying out key energy transitions and experiencing disastrous weather

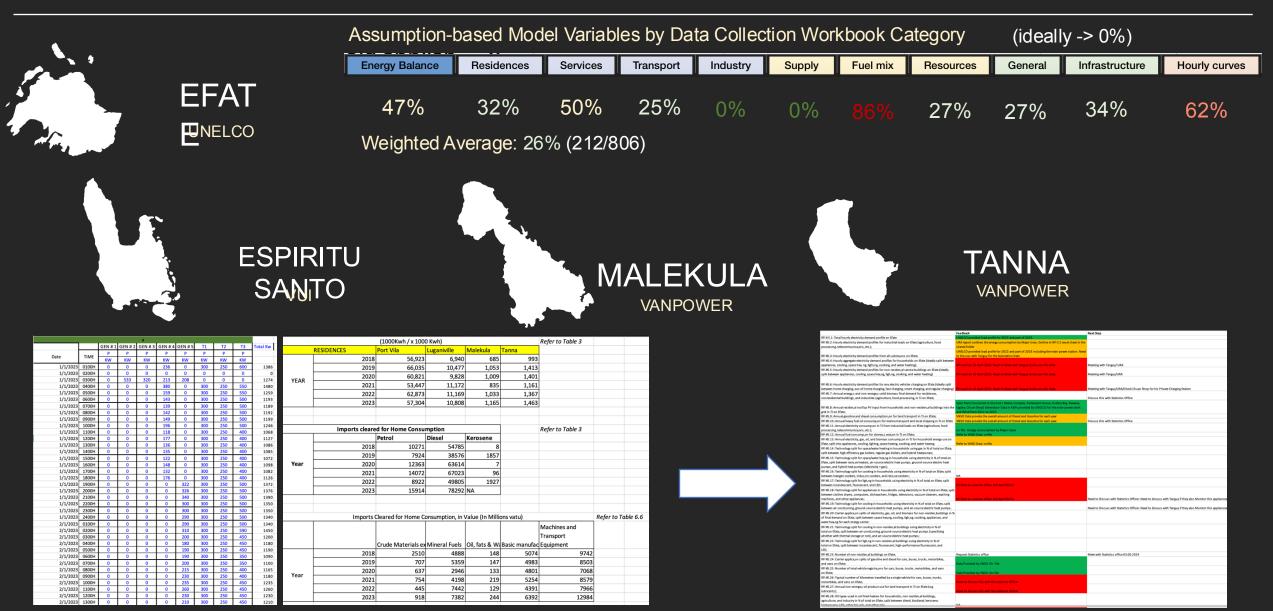



Data Centralisation


Opportunity to adopt a proven data collection framework to track national/state energy production, conversion, and consumption


Economic Development


Identify opportunities to expand economy/infrastructure in conjunction with energy sector and create a regional trade network in the Pacific



DATA COLLECTION STATUS

ETHELPER – DEPLOYMENT

Develos of GAN Chips://github.com/EdoardoSantagata/ethelper

Key requirements: Python3, Internet Browser (Google Chrome, MS Edge, etc.)

EdoardoSantagata / ethelper		Q	Type [] to search >_)	+ • • • •	Workflow
> Code 💿 Issues 🎲 Pull requests 🕟 Actions 🖽 Projects 🛈 Securit	y l <u>∼'</u> Insights 🕸 Settings				
ethelper Public	🖈 Ung	oin 💿 Unwatch 1	► 🥴 Fork 0 ► 🟠 Star 0 ►		Dataset Generation
🐉 main 👻 🤔 2 Branches 🛇 0 Tags	Q Go to file (t) Add file	▼ <> Code ▼	About 龄		Ļ
EdoardoSantagata Update README.md	173b557 · yesterd	day 🕚 9 Commits	Front-end to streamline ETM dataset development and deployment process.		Dataset Migration
in config	Add files via upload	5 days ago	🛱 Readme		Dataset Migration
icons	Add files via upload	5 days ago	॒ MIT license -∿ Activity		1
i output	Add files via upload	5 days ago	☆ 0 stars		· · · · · · · · · · · · · · · · · · ·
presets	Add files via upload	5 days ago	⊙ 1 watching% 0 forks		Dataset Checks
ariables	Add files via upload	5 days ago			
	Update LICENSE	4 days ago	Releases		
C README.md	Update README.md	yesterday	No releases published Create a new release		• • • • • • • • • • • • • • • • • • •
🗅 ethelper.py	Rename app.py to ethelper.py	5 days ago	Packages		Dataset Export
다 README 책 MIT license		∅ :≡	No packages published Publish your first package		Ļ
			Languages		
Welcome to ETHelper - Dataset Generator a	nd Local Tester for the Energy Transition Model (ETM)		 Python 100.0% 		ETM Local Testing
OVERVIEW			Suggested workflows Based on your tech stack		
ETHelper is a front-end application which st	reamlines some of the key development processes for us	sing the			
	https://github.com/quintel). It allows users to create data: purce for use in the tool. It also automatically sets up a log		Python Package Configure using Anaconda		

Create and test a Python packag

DIDEATADIEA

DISCUSSION QUESTIONS

What key multi-sectoral modelling outputs are crucial to inform decision-making and planning for utilities? How should these outputs travel across governance levels?

How can utilities improve data collection and information sharing? What sort of engagement exists with other energy-consuming economic sectors?

How important do you think a multi-sectoral approach is for the energy transition?

Australian Government

Department of Climate Change, Energy, the Environment and Water

Thank you!

Tankyu! Merci! Faafetai! Tubwa! Vinaka! Malo! Kommool! Whakawhetai ki a koe! Fakafetai fāfetai! Si Yu'os Ma'åse'!

Edoardo Santagata edoardo.santagata@unsw5edu.au