

PPUC Case Study Cost Effective Reliability S&C and PPUC Presented by: Eduardo Soares Sep/2024

Outline

Agenda

1. Palau Public Utilities Corporation

- 1. Introduction
- 2. Project Background

2. Decision on technology

- 1. Similar case studies from North America
- 2. Affordability
- 3. Simplicity

3. Case Study Results

- 1. Training and Installation
- 2. Operation summary

4. Conclusion

Palau Public Utilities Corporation

Overview

- Established in 2013 (operating since 1994).
- 47 miles of 34.5kV Transmission
- 114 miles of 13.8kV Distribution
- 28MW Generation
- ~7,000 customers (~80% residential)

Palau Public Utilities Corporation Today's Conservation is Tomorrow's Prosperity

Reliability Concerns - 2019

- Aside from Koror, load spread on long feeders to North of main island.
- Exposure to severe weather events and high vegetation growth.
- Program started in 2019-20 to investigate transmission and distribution reliability improvements.
- Evaluated several automation options, including load-break switches, single-phase reclosers and three-phase reclosers.
- Budget severely constrained.
- What can they learn from similar past experiences ?

Outline

Agenda

- **1. Palau Public Utilities Corporation**
 - 1. Introduction
 - 2. Project Background

2. Decision on technology

- 1. Similar case studies from North America
- 2. Affordability
- 3. Simplicity
- 3. Case Study Results
 - 1. Training and Installation
 - 2. Operation summary
- 4. Conclusion

Implement a Comprehensive Plan – The FPL Story

Surrounded by Coastline

Heavy Storm Landfall

High Rates of Lightning

Rapid Vegetation Growth

Confidential

FPL Serves More than 12 Million People Across Florida

Seven storms in two years!

Achieving Resiliency Through Smart Grid Initiatives

Before the Storm

During the Storm

After the Storm

Achieving Resiliency Through Smart Grid Initiatives

Before the Storm

During the Storm

After the Storm

Storm Secure Program (2006-Present)

Pole Inspections

Vegetation Management

Underground Conversions

Before the Storm | Smart Grid with Fault Management Solutions

Feeder: 7,000 Installed

IntelliRupter[®] PulseCloser[®] Fault Interrupter

Lateral: 95,000 Installed

TripSaver® II Cutout-Mounted Recloser

Grid-Edge: 30,000+ Installed

VacuFuse[®] II Self-Resetting Interrupter

Achieving Resiliency Through Smart Grid Initiatives

Before the Storm

During the Storm

After the Storm

Storm Comparisons

Charley 2004 – 1.9*

Hurricane wind speed (74 + mph/119 + km/h)

Gale force wind speed (58-73 mph/93 km/h - 117 km/h)

Tropical storm wind speed (39-57 mph/63 km/h - 92 km/h)

Irma 2017 – 4.3*

*Please Note:

Cyclone Damage Potential Index = force of wind, radius of wind field, and duration of winds experienced.

The higher the number, the higher the intensity of the storm

During Storms | Hurricane Ian Restoration

Dayo

Achieving Resiliency Through Smart Grid Initiatives

Before the Storm

During the Storm

After the Storm

FPL & Gulf Power's SAIDI 2006-2020

Outline

Agenda

- **1. Palau Public Utilities Corporation**
 - 1. Introduction
 - 2. Project Background

2. Decision on technology

- 1. Similar case studies from North America
- 2. Affordability
- 3. Simplicity
- 3. Case Study Results
 - 1. Training and Installation
 - 2. Operation summary
- 4. Conclusion

Does a Fusing Strategy Make Sense for Your Laterals?

Using Fuses for Lateral Protection Results in Avoidable Costs and Decreased Reliability

80% of overhead line faults are due to **temporary causes**

Sustained fuse outages **require a crew** to restore power

Truck rolls can exceed \$1,000

Keep the Power On for More Customers with TripSaver[®] II Cutout-Mounted Recloser

Improve Reliability

Reduce Costs

Deploy with Confidence

An electronic recloser that uses a vacuum bottle to interrupt fault current

- Automatically restores power for temporary faults
- Locks out, drops out for permanent faults
- Brings fault isolation and reclosing closer to the problem

Keep the Power On for More Customers with TripSaver[®] II Cutout-Mounted Recloser

Improve Reliability

Reduce Costs

Deploy with Confidence

Keep the Lights on Without Inundating Your O&M Budget and Crews

Dramatically Reduce Expensive Truck Rolls

Vehicle Costs Gas, Insurance, Depreciation, Maintenance, Emissions

Circuit Topology Costs

The Longer the Length, the Higher the Cost-Savings

Reduce Costs

Keep the Lights on Without Inundating Your O&M Budget and Crews

No more patrolling for a fault that isn't there

Less time spent on avoidable fuse replacements

More time spent on **unavoidable interruptions**

Keep the Power On for More Customers with TripSaver[®] II Cutout-Mounted Recloser

Reduce Costs

Deploy with Confidence

A Like-For-Like Replacement

Emulate TCC curves for **fuses**

Simple Deployment & Operation

Drop-out visibility

Self-powered with no comms required to operate

Installs into a cutout mounting

Outline

Agenda

- **1. Palau Public Utilities Corporation**
 - 1. Introduction
 - 2. Project Background
- 2. Decision on technology
 - 1. Similar case studies from North America
 - 2. Affordability
 - 3. Simplicity

3. Case Study Results

- 1. Training and Installation
- 2. Operation summary

4. Conclusion

TripSaver II Project at PPUC

Initial rollout map

3 years since installation

Locations - EAST	Temporary Faults*	Permanent Faults*
Kokusai	92	6
Downstream	8	3
Galaxy	21	12
Dirrus	122	24
Melekeok	32	8
TOTAL	275	53

Locations - NORTH	Temporary Faults*	Permanent Faults*
Uumang	47	5
Ngril	11	2
Ollei	13	1
Ngurang	56	4
Oketol	9	4
Ngerbau	17	2
TOTAL	153	18

3 years since installation

Locations - EAST	Temporary Faults*	Permanent Faults*
Kokusai	92	6
Downstream	8	3
Galaxy	21	12
Dirrus	122	24
Melekeok	32	8
TOTAL	275	53

Locations - NORTH	Temporary Faults*	Permanent Faults*
Uumang	47	5
Ngril	11	2
Ollei	13	1
Ngurang	56	4
Oketol	9	4
Ngerbau	17	2
TOTAL	153	18

Conclusion:

- 428 outages avoided
- 428 truck-rolls avoided
- ~2.5 tons of CO2 emissions avoided
- Payback ~1.5 years average

Outline

Agenda

- **1. Palau Public Utilities Corporation**
 - 1. Introduction
 - 2. Project Background
- 2. Decision on technology
 - 1. Similar case studies from North America
 - 2. Affordability
 - 3. Simplicity
- 3. Case Study Results
 - 1. Training and Installation
 - 2. Operation summary

4. Conclusion

Conclusion

S_rC

Key takeaways

- Affordable and reliable energy distribution plays a key role in the uptake of use of renewables – parallel effort
- Simple devices, such as single-phase reclosers can have a great impact in reliability whilst keeping affordability in check
- Success story in 40+ countries, including several pacific islands

Palau Public Utilities Corporation Today's Conservation is Tomorrow's Prosperity

© S&C Electric Company 2023, all rights reserved.