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EVOLUTION OF OPERATIONAL LOAD FORECASTING
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WHAT DOES AN OPERATIONAL FORECAST MODEL LOOK LIKE?
A Cascade of Models Each Fit for Purpose
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KEY CHALLENGES

Our Role is to Help the Power Industry Overcome these Challenges

» COVID-19 & Climate Change have changed the way we
use appliances. High power device usage (such as HVAC)
IS evolving.

» Strategic Adoption of Grid-Connected Renewable
Generation

* Recent focus and R&D is on forecasting grid-connected
resources

* Limited focus on distributed generation forecasting

» Deep penetration of Distributed solar PV generation & EV
charging push the technical limits of the Low Voltage Grid

* Creating a need for greater geospatial forecast detail
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We used to Measured Power Consumption

SCADA Metered

Before Distributed Energy Resources (DER)

Delivered

. . SCADA SCADA
» Delivered Power = Consumption I Cai” " = Lg; I

» Short-term forecasting uses SCADA measurements at the transformer /
circuit etc. to describe consumption load shapes
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Now we Measure Net Load Masking Consumption

Not Measured

SCADA Metered
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The Operational Forecasting Problem is Evolving

23

Distribution of Total Site Power Consumption by 15-min Interval (MW)

Power Consumption before

Distribution of Total Site Power Consumption by 15-min Interval (MW)

~ with EV Charging

Before we forecast Consumption that was
well understood. Accuracy depends on

weather forecast performance.
Spinning reserves at minimum levels given

certainty of demand.

Net (Delivered less Received) Grid Flows by 15-minute Inteval (MW)

Now forecast energy imbalances leading

to forecast instability

Higher spinning reserves to cover the
uncertainty resulting in higher system
operating costs in order of magnitude of

millions dollars.

Frequency Distribution of Solar PV Generation by 15-min Time Interval (Mw)

L

Embedded
Solar Gen

Frequency Distribution of Stored Energy by 15-min Time Interval (MWh)

Embedded
Storage
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Load Masking Leads to Measurement & Forecast Instability
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As solar PV generation cuts in and
out, measurements of Net Load
bounce around.

Autoregressive models that
leverage lagged Net Loads risk
casting that load volatility into the
forecast period.



Autoregressive Terms and Forecast Instability

Autoregressive Terms Work Well Autoregressive Terms Break Down

Load Load
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What to do with Solar PV Generation?

Direct Modelling Approach

1000

v

Distributed solar PV generation is not metered
» Engineering-based estimates driven by GHI

v

Direct Modelling provides statistically-adjusted
solar PV generation values

400

v

To make it work the autoregressive terms need
solar PV generation interactions to free up the
slopes .
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Getting the specification right is THE challenge
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What to do with Solar PV Generation?

Reconstituted Load Approach

» Assumes solar PV generation estimates are
correct & the impact is 1.0 KW of solar PV
generation lowers loads by 1.0 KW

» The autoregressive process is relatively stable
with Reconstituted loads

» Getting the specification right is THE challenge
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Evolving from Direct Modelling to Reconstituted Loads

Dealing with Uncertain Solar PV generation estimates

»i » There are two major approaches to GHI estimation

L Easy Days .
o Predict and forecasting

GHI

* Numerical Weather Prediction Models use
mathematical models to predict cloud cover
movement. These forecasts are then translated
to forecasts of GHI which drive solar PV
generation estimates.

- BEST for Forecast Horizons of 4 Hours +

Hard Days _ . _
To predizt . Sat_elllte Image Decomposition provide
GHI estimates of cloud cover over 1km x 1km

squares. Mathematical models then infer the
GHI values.

- BEST for Forecast Horizons up to 4 Hours

Hron  ©2023 ITRON CONFIDENTIAL PROPRIETARY 12



Evolving from Direct Modelling to Reconstituted Loads

Dealing with Uncertain Solar PV generation estimates
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» Few utilities collect in real-time the population
of solar PV generation. As a result, we
reconstitute with an estimate of rooftop solar
PV generation.

* On cloudy to partially cloudy days solar PV
generation estimates are at their highest
levels adding volatility to the reconstituted
loads.

* E.g., Net Load measurement goes down but
estimated Solar PV generation goes down
compounding the swing in Reconstituted
loads

* Defeats the purpose of using Reconstituted
Loads

13



Two Stage Ensemble Smoothing

» How can we save the Reconstituted Approach?

» Observation: Aggregate changes in Consumption oscillate at a slower frequency than Solar PV
Generation
The field of Signal Processing suggests a range of smoothing algorithms that will filter out
unwanted high frequency oscillations of “noisy solar PV generation estimates” leaving a relative
smooth reconstituted load series

> But...

« Wide smoothing windows while cutting through the noise of solar PV generation risk smoothing
through key turning points in underlying consumption of power

« Narrow smoothing windows maintain key changes in consumption, but also the volatility of solar
PV generation

» How do we balance removing the noise from the solar PV while maintaining key features of
consumption?

”rﬂﬂ ©2023 ITRON CONFIDENTIAL PROPRIETARY
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Savitzky-Golay Smoothing Filters

Centered Moving Average using Polynomial Weights

» SG Smoothing is useful for load forecasting
because the polynomial weights preserve the
curvature of the load data.

« A straight centered-moving average would
produce a relatively flat result.

» But which Smoothing Window Should be Used
to Smooth Reconstituted Load?

Iﬂ’vll ©2023 ITRON CONFIDENTIAL PROPRIETARY
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Step One. Smooth the Solar PV Estimates/Forecasts

» Apply an ensemble of smoothers (e.g.,
different SG Smoothing Windows) to
the raw solar PV estimates

» Create a weighted average solar PV
estimate by weighting the alternative "
smoothed solar PV estimates '

» Each smoother is assigned a weight
which depends on the volatility of the
raw solar PV generation data

Solar PV s SMiooth Solar PV 25PT 21PT o 17PT o 13PT  commm GPT e 5PT

’froﬂ ©2023 ITRON CONFIDENTIAL PROPRIETARY

16



Step One. Smooth the Solar PV Estimates/Forecasts

» The second order derivatives of the
smoothed solar PV generation are used to
form the weights

400

» The second order derivatives of a clear sky
day are used as a normalization factor

» Narrow windows are preferred on Clear

Sky days
> Wider windows are preferred on Partially .
Cloudy days D

12:15:00 3:15:00 6:15:00 9:15:00 12:15:00 3:15:00 6:15:00 9:15:00 12:15:00 3:15:00 &:15:00 9:15:00 12:15:00 3:15:00 6:15:00 9:15:00
AM AM AM AM PM PM PM PM AM AM AM AM PM PM PM PM
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Step Two. Smooth the Reconstituted Load Data

The same ensemble of smoothers are
applied to the raw reconstituted load

In this step, the smoothing weights
from Step 1 are applied to create a
weighted average reconstituted load
series

In effect, we use the volatility of the
solar PV data to drive the size of the
smoothing window for the
reconstituted load time series
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A Step Toward Forecast Stability
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» Operational forecasting is
growing in complexity as we
transition to 100% renewable
generation

» Solving the operational
forecasting problem is a small,
but critical piece to ensuring a
quick & successful transition

19



AUSTRALIA’'S NEM REFORM PROGRAM

Program Overview

Successfully enabling the energy transition and net-zero emissions economy for Australians

DRIVING THE NEM REFORM
AMBITION
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» Dynamic Operating Envelopes for Solar Export at every Premise for every
5min period
* Protect Assets
* Ensure Minimum Demand Met N ‘ . |
* Encourage PV Marketplace T .
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SMART METERING FOR CONSUMPTION

» Data from Smart metering used to create 5| v (R

99999999051: July Power Data (7/31/2021 - 9/12/2023)

historic profiles z

» Data can be collected with low latency (5min .
data every 15 mins 1 aag
y ) — L\_\mj/—/\

— Reading Incomplete Load Event Load Control Filled Bad
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» Provides one element of the equation F il \
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STREETLIGHTS AS GHI MONITORS

Py T v——

\/

» NLC photocell measures GHI

» Smart Streetlighting COMMS network relays
information back to central system with low latency

» Provides a means to gain the other part of the

i = S equation
E =—uu I
» Data from photocell
comparable to that attained ' |
from dedicated costly l i
sensors .
" B ¥R
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PUTTING IT ALL TOGETHER

Historical and forecasted load
1:00 PM, September 11 2023 - 1:00 PM, September 13 2023
20

» Having a stable forecasting allows for ~=__~a | A T D
confidence in automation to the volumes of \Tr T
consumers expected

» Ensures that generation capacity
constraints can be calculated to ensure
both minimum demand is met, and assets
are protected

» Allows for incentives for individual PV installations to be provided
to hasten transition

» Enables schedulers to be more accurate in spinning reserve
estimates

» Means less wasted traditional diesel / carbon generation and
reduced overall costs to supply

‘ Forecasted
-40
6:00 PM Sep 12 6:00 AM 12:00 PM 6:00 PM Sep 13 6:00 AM 12:00 PM

rm—
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