

29th PPA CONFERENCE – BRISBANE USE OF ORC TECHNOLOGY FOR THE GENERATION OF RENEWABLE ENERGY

ELECTRATHERM ORC SOLUTIONS

ELECTRATHERM – WHO WE ARE

- Renewable Energy Company focussed on Heat to Power Generation
- Founded in 2005 Part of BITZER GROUP since 2016
- Leading Engineering Team with expertise in Organic Rankine Cycle design and application
- Successful development of Power+Generator with 100+ Units installed worldwide and combined fleet time of 2.2 Million Hours
- ➢ First commercial unit installed 2011 − still in operation
- Office and Manufacturing Located Flowery Branch Georgia USA
- World Class ORC Research and Development Centre Flowery Branch

HOW IT WORKS

ELECTRATHERM ORC TECHNOLOGY

3

Heat Boils Refrigerant

Under pressure, the vapor is fed to atwinscrew expander, spinning an electric generator which then produces power.

Vapor then re-cooled in condenser (cold side)

Refrigerant pumped to higher pressure and cycle repeats

ELECTRATHERM ORC TECHNOLOGY KEY POINTS

- The standardised design and modular package enables the fully assemble unit to be factory tested prior to shipment – with opportunity to prove operation and output against simulated site operating conditions
- Why the use of hot water as the heat input fact is water is an excellent carrier of heat, is non toxic and environmentally safe – not a silent killer, can be easily transferred through piping systems and provides opportunity for downstream processes.
- The Twin Screw Expander is a commercially proven semi hermetic design, accommodates fluctuations in heat input safely whilst operating at a lower speed 3600 rpm at 50Hz
- The process of transferring heat to/from the working fluid results both cooling of the heated water providing opportunities for process fluid/gas cooling and heating of the condensing circuit providing opportunities for CHP applications
- The working fluid R245fa is non flammable, environmentally safe and non ozone depleting. Testing of different working fluid blends with low GWP is currently in progress with aim to enhance performance at different heat input.

ORC SYSTEMS

Power+6500B/6500B+ Output up to 125 kW Heat Input 70°C – 150°C

Power Module PM75 Output up to 75 kW Heat Input 65°C – 132°C Active Cooler AC800 Output up to 75 kW Cooling Capacity – 800 kWth

All **ElectraTherm ORC Systems** are Standardised, Modular and Relocatable

Smart Allocation of Assets Over Time / "Asset Efficiency"

5

RESEARCH AND DEVELOPMENT

ElectraTherm current Research and Development projects:

- Development of the Power+250B which will have a gross output of up to 250 kWe. A prototype has been assembled and product testing has commenced. Expected release mid to late 2023.
- Next Generation Working Fluid. R & D based on testing of blends with ultra low GWP and enhanced performance at lower temperatures.
- Testing has commenced on the compatibility of a twin inverter virtual grid system with the ORC operation and control system to enable the ORC to operate safely in "islanding mode". This will allow operation as the principal generating unit for micro grids or as part of a hybrid system

JOURNEY TO ENERGY EFFICIENCY AND NET ZERO CARBON EMISSIONS

There are many pathways to achieve energy efficiency and net zero carbon emissions by 2050.

For Energy efficiency the key is using the energy released by the fuel more than once. This can be achieved by using waste heat for either power generation or other processes. ElectraTherm have solutions based on our ORC technology to achieve energy efficiency.

To achieve Net Zero the pathway includes the use of waste heat/ energy efficiency, solar and wind power, new technologies, next generation renewable fuels, biomass and biogas and geothermal.

The pathway to net zero does NOT preclude the use of engine based power generation which will remain an important component of power generation by providing network "firming and stability" whilst meeting future additional power demand.

Energy efficiency through waste heat to power and next generation fuels will provide the opportunities to reduce carbon emissions whilst still providing an essential service at affordable prices.

HEAT RECOVERY PROJECT WHY & WHAT IS THE AIM

The First Step is to establish the reasons for embarking on a heat recovery project.

Why?

- Improved Energy Efficiency from Your Generating Assets
- Environmental Reasons Meeting your Emission Reduction Targets
- A Better Way of Doing Things worlds best practice
- Financial Benefit Improving the profitability of your operation by utilizing waste streams for additional revenue or reducing the amount of fuel consumed in the generation of electricity.

8

HEAT RECOVERY PROJECT SOURCES AND USES OF HEAT

9

Second Step – Which Heat Source and How to Use It

- Generator Engine Jacket Water Use heat within the Jacket Water to provide the power to operate the cooling system – saving parasitics and excess energy for the grid
- Generator Engine Exhaust High temperature waste heat for the generation of additional power for the grid for no additional fuel use.
- Combination of Jacket Water and Exhaust Waste Heat achieve both power free engine cooling and additional energy for the grid – useful for smaller capacity engines
- Other Potential Heat Sources Biogas/ Methane, Biomass, Waste to Energy and Geothermal
- Secondary uses of heat include provision of heat input for Absorption Chillers, How Water System, Heating of Buildings/ Greenhouses and other industrial processes.

HEAT RECOVERY PROJECT SELECT THE RIGHT TECHNOLOGY

Third Step – Selecting the Right Technology

The factors that make the **ElectraTherm ORC Solution** the right technology

- 1. Heat source is a low temperature The hot water heat input into the **ElectraTherm ORC's** is in the range of 70°C to 150°C.
- 2. The source of heat fluctuates. The twin-screw expander operates under "wet" conditions and has a turndown capability of 10 to 1
- 3. Flexibility to provide power generation and useful heat the **Power+Generator** can be configured for Combined Heat to Power (CHP) operation.
- 4. Installation is simple and unobtrusive and operates quietly in the background
- 5. Installation is cost effective in both capital cost and lifetime maintenance

HEAT RECOVERY PROJECT IMPLEMENTATION

STEP FOUR

Forth Step – Implementation

ElectraTherm will be your partner throughout all stages of the project process from the initial concept through to installation and commissioning.

For turnkey projects such as the installation in Pohnpei we support our system integrator partner **B:Power** who are specialists in the design and implementation of ORC based Power Generation Projects.

After commissioning and handover, both **ElectraTherm** and **B:Power** will continue to provide technical support and maintenance services as required.

APPLICATIONS FOR THE PACIFIC

DIVERSE AND FLEXIBLE

BOTTOMING CYCLE VS PRIMARY GENERATING

Bottoming Cycle

- A Bottoming Cycle is an extra cycle added to a process that is different from the primary driver.
- The main process will drive the conditions
- Other thermal users will take priority over the bottoming cycle

Standard low temp ORC acting as bottoming cycle

Primary Generating

- The ORC is the first/ primary user of the heat to generate electricity
- The ORC establishes the required hot water conditions from the heat source.
- Other thermal users have secondary use of the heat exiting the ORC from the hot water cycle or rejected from the condensing circuit

STATIONARY ENGINES - ENERGY EFFICIENCY

Simple solution for immediate action

Issue: Energy Inefficiency due to non use of waste heat.

Solution: Energy Efficiency - Installation of **Power+ Generator** to use waste heat from engine exhaust and **Active Cooler** for Engine Cooling. Result saving in operating costs and improved energy efficiency.

NEXT GENERATION ENGINE COOLING AC800 OVERVIEW – RETURN TEMPERATURE CONTROL

Traditional Engine Cooling Systems require either direct mechanical or electrical energy to provide the necessary rejection of heat. As the engine operator you are paying to create the waste heat (fuel cost) and you are paying again to reject that heat (power consuming radiator). The Active Cooler replaces the cost for rejecting the heat and can provide additional power for your customers

To Be A Radiator Replacement the AC800 Must Maintain the Required Return Temperature!

- The Active cooler design aims to include and supply the entire scope of work to replace traditional power consuming radiator cooling.
- Use a direct contact method of heat transfer instead of traditional heat exchanger

🗱 ElectraTherm

APPLICATION POWER+6500B⁺ OUTCOME

Manufacturer			Model			Qty	1	Rated	Output	2500	kW	Fuel		Diesel
Heat Source	Exhaust			No of Engines to ORC			1	No of	Systems	1	No of ORC's		1	
Application	Active Co	ooler JW		Active Cooler Boosted JW			ORC JW	/ Cooling			xhaust H	eat	Yes	
Jacket Water	H/Temp		С	R/Temp		С	Flow		m3/hr	Total	Heat	900	kWth	
Heat to Reject	Lube Oil		kWth	I Cooler		kWth	Engine		kWth	Available Exhaust T		Thermal	900	kWth
Hot Water Circuit		Temp	130	С	Flow	Rate	7.5	l/sec	Standar	d Radiator	Offset		kW	

MONTH	ANNUAL AVERAGE							
AVERAGE AMBIENT	TEMP 27.9 C							
Power+Generator	6500B+							
Expander	Expander I							
NO OF UNITS	1							
OUTPUT PER UNIT								
GROSS OUTPUT	81.3 kW							
SYSTEM OUTPUT	57.4 kW							
OUTPUT PER INSTAL	LATION							
GROSS OUTPUT	81.3 kW							
SYSTEM OUTPUT	57.4 kW							

ElectraTherm

BY BITZER GROUP

	Median	Averag	e Hot Wate	r Input	Estimated ORC Output			Parastic P	ower Loads		ORC Sys	tem Nett	Outputs	Est Annual Output Median Temperature				
Month	Month Ambient Temp	Averag	c not wate	.i input			HW	CW	Rad Fans	Total	Std Rad	System	Total					
WORth		Temp	Flow	Heat	Gross	Nett	Pump	Pump	Ndu Falls	Total	Offset	Nett	Systems	Wieda	an remperature			
	С	С	l/sec	kWth	kWe	kWe	kW	kW	kW	kW	kW	kWe	kWe	Hrs	Output kW			
Jan	28.5				877.0	81.3	70.6	1.0	4.3	7.9	13.2		57.4	57.4	722	41,459		
Feb	28.5			877.0	81.3	70.6	1.0	4.3	7.9	13.2		57.4	57.4	652	37,447			
Mar	28.5						877.0	81.3	70.6	1.0	4.3	7.9	13.2		57.4	57.4	722	41,459
Apr	28.5			877.0	81.3	70.6	1.0	4.3	7.9	13.2		57.4	57.4	699	40,122			
May	28.0						877.0	81.3	70.6	1.0	4.3	7.9	13.2		57.4	57.4	722	41,459
Jun	28.0	420.0	7.5	877.0	81.3	70.6	1.0	4.3	7.9	13.2		57.4	57.4	699	40,122			
Jul	27.0	130.0	7.5	879.0	81.3	70.6	1.0	4.3	8.0	13.2		57.4	57.4	722	41,445			
Aug	27.0				879.0	81.3	70.6	1.0	4.3	8.0	13.2		57.4	57.4	722	41,445		
Sept	27.0			879.0	81.3	70.6	1.0	4.3	8.0	13.2		57.4	57.4	699	40,108			
Oct	27.5				879.0	81.3	70.6	1.0	4.3	8.0	13.2		57.4	57.4	722	41,445		
Nov	28.0			877.0	81.3	70.6	1.0	4.3	7.9	13.2		57.4	57.4	699	40,122			
Dec	28.0			877.0	81.3	70.6	1.0	4.3	7.9	13.2		57.4	57.4	722	41,459			
Annual	27.9	130.0	7.5	878	81.3	70.6	1.0	4.3	7.9	13.2		57.4	57.4	8,500	488,089			

Project Budget \$US500,000 - Value of Power \$US 0.25/kWh Estimated Payback 4.2 yrs

					В	Y BITZER GRO	OUP		15 Sep 202
		Inputs			Power+	Evaluation	A	verage Estimated Outputs	2.2.1.0
0 % GLY	70 - 150 °C	130.0	c	Hot Water Inlet Temperature	Series	6500B+ ¥	81.3 kWe	P+ Gross Power Output	
	6-231/5	7.5	Lis	+lot Water	System Type	Grid	70.6 kWe	P+ Net Power Output	
				How Kate	O Type L	() 60 Hz	879 kW	Thermal Power Into P+	
	-	900	kW	Available	O Type M	() 50 Hz	21 kW	Remaining Thermal Power	
		0	kW	Additional Thermal	Type I		795 KW	Thermal Power Rejected	
			-	Cold Water Inlet	O Type H		100.6 C	Hot Water Exit Temperature	
Auto CW In.	12 + 80 °C	39.0	C	Temperature	O All Types		46.4 C	Cold Water Exit Temperature	
	9-26 L/s	26.0	L/s	Cold Water Flow Rate	Working Flui	d R245fa 🔻	4.3 kWe	Estimated Load from Gold Water Pump	
		70.0	12	- Ambient Air			8,0 kWe	Estimated Load from Radiator Fans	
Reset	Estimate	assumes pure	e water (09	6 propylene glycol by volume.	,	David Knight			
13	0.0 C 7.5 ∐/s		Evaporato	x Expander Ger	Gi	ross Power Generated 81.3 kWe	LLR Approach 11.0 C Ambient Air Temp	Thermal Power Rejected 795 kW	
-	21 kW	_(§)	79 kW Condense Pump	5	46.4 C	28.0 C Water Pump		8.0 kWe

APPLICATION – ACTIVE COOLER OUTCOME

BY BITZER GROUP

Manufacturer		Equip	AC800	AC800 Expand		Units	1	No of Engi	No of Engines Per ORC		1 Waste Heat S		leat Source Jacket W		
Model	odel Qty		1	Rated Output		2500	kW	Grid	50	Hz	Fuel	Diesel Operating H		ours	8500
Jacket Water	ater H/Temp 93		С	R/Temp	82	С	Flow	18.6	l/sec	Heat	832	kWth	Modules		
Heat to Reject	Lube Oil		kWth	I Cooler		kWth	Engine	832	kWth	Total	Stand	standard Radiator Offset		8	kWth
Exhaust Heat Temp		Mass Flo	N				Heat	kWth		Radiator Ap		oroach	11	С	

MONTH ANNUAL AVERAGE AMBIENT TEMP 27.9 C

POWER+GENERATOR AC800 Expander L NO OF UNITS 1

OUTPUT PER UNIT **GROSS OUTPUT** 33.1 kW SYSTEM OUTPUT 19.0 kW

OUTPUT PER INSTALLATION 33.1 kW **GROSS OUTPUT** SYSTEM OUTPUT 19.0 kW

93.0 C **Electricity Out** 82.0 C 18.6 m3/hr

Month	Median Ambient	Jack	et Water Ir	nput	put Per Module		odule Estimated AC Output		Parastic Loads CW Rad Eans		AC System Nett Outputs Std Rad System Total			Est Annual Output Median Temperature					
WOITT	Temp	Temp	Flow	Heat	Flow	Heat	Gross	Nett	Pump	Ndu Falis	Offset	Nett	Systems	wieure	an remperature				
	С	С	l/sec	kWth	l/sec	kWth	kWe	kWe	kW	kW	kW	kWe	kWe	Hrs	Output kW				
Jan	28.5			685			31.9	17.8	2.3	8.0	8.0	25.8	25.8	722	18,625				
Feb	28.5			685			31.9	17.8	2.3	8.0	8.0	25.8	25.8	652	16,823				
Mar	28.5							685			31.9	17.8	2.3	8.0	8.0	25.8	25.8	722	18,625
Apr	28.5						685			31.9	17.8	2.3	8.0	8.0	25.8	25.8	699	18,025	
May	28.0			690			33.1	19.0	2.3	8.0	8.0	27.0	27.0	722	19,492				
Jun	28.0	92.0	19.6	690			33.1	19.0	2.3	8.0	8.0	27.0	27.0	699	18,863				
Jul	27.0	33.0	10.0	695			34.3	20.1	2.3	8.0	8.0	28.1	28.1	722	20,286				
Aug	27.0			695	95 95 90		34.3	20.1	2.3	8.0	8.0	28.1	28.1	722	20,286				
Sept	27.0			695			34.3	20.1	2.3	8.0	8.0	28.1	28.1	699	19,632				
Oct	27.5	Í		690			33.1	19.0	2.3	8.0	8.0	27.0	27.0	722	19,492				
Nov	28.0			690			33.1	19.0	2.3	8.0	8.0	27.0	27.0	699	18,863				
Dec	28.0			690			33.1	19.0	2.3	8.0	8.0	27.0	27.0	722	19,492				
Annual	27.9	93.0	18.6	690			33.0	18.9	2.3	8.0	8.0	26.9	26.9	8,500	228,503				

Project Budget \$US245,000 - Value of Power \$US 0.25/kWh Estimated Payback 3.9 yrs

BIOGAS/ BIOMASS – POWER GENERATION/ CHP SYSTEMS

Power Generation/Useful Heat – Power+6500B⁺/Power Module

- Heat From Biomass/Biogas Fueled Boilers
- ➢ ORC as Heat Balancing Unit allowing Boiler to operate 100%
- CHP Capability Meeting Downstream Requirements
- Bottoming Plants

WASTE TO ENERGY INCINERATION/ PYROLYSIS

Waste Heat Power Generation

- Power+6500B⁺/Power Module
 - Waste Heat From Incineration/ Pyrolysis Plants
 - CHP Capability Meeting
 Downstream Requirements
 - Bottoming Plants

19

Turning Thermal Energy Into Geothermal Electricity

- Geothermal is Abundant and Renewable
 - Millions of existing wellbores
- Geothermal is Baseload

E MAR

- Wind and solar are intermittent and require carbon-intense batteries for reliability
- Geothermal is Distributed and Dispatchable
- Geothermal Systems can be scaled from 10 kW to 100+ MW distributed systems
- Geothermal is Cost-Effective
- Reusing existing infrastructure and wellbores reduces capital intensity and eliminates new surface disturbance
- Partnering with Specialist Companies working with Transitional Energy to repurpose existing oil well infrastructure

* Photo courtesy of Transitional Energy

NOVEMBER 2022

The project consists of three ElectraTherm Power+6500B⁺ ORC's that have been installed inside 40' shipping containers, to recover waste heat from the diesel generators, both engine exhaust and jacket water. These units will significantly increase the efficiency of the existing diesel generators by producing about 200 kWe as well as replacing the existing engine coolers providing a further saving on heat rejection power requirements.

Implementation of this project is being undertaken by B:Power

ElectraTherm

B:Power have six personnel onsite, who together with local staff and the support of the PUC under the leadership of Nixon Anson, have commenced the installation of the equipment. One of the big challenges has been the local climate conditions with excavation work being at times compared to swimming lessons.

The advantage of containerisation of the ORC's, apart from protection against the weather conditions, has been reduced onsite installation time as key components were preassembled at B:Power's facility in Europe.

Full start-up of all units is scheduled for early 2023 when the equipment will be commissioned and officially handed over to the Pohnpei Utilities Corporation. Training of PUC staff in the operation and maintenance will be provided as will long-term support to ensure continued optimum performance of the Project.

ElectraTherm

FUNDING FOR ENERGY EFFICIENCY PROJECTS

The are several international "green" funds and aid programmes from key donor countries that are available to support installation of renewable energy projects. Unfortunately many of these funds preclude funding for projects where the heat source uses fossil fuel or a fuel not considered "green" enough.

We should all recognise that engine based power generation in the Pacific will remain an important component of power supply for many years to come. Until new generation "green" fuels are available the use of diesel or gas will remain as the principal fuel for these generating assets.

To achieve Net Zero there is a need **Now** to achieve energy efficiency and projects using waste heat from engine based generation are just as important as solar, battery and wind projects to achieve climate goals.

I am pleased to note that ADB funding criteria does allow funding for energy efficiency projects based on retrofit of existing facilities. My request to other fund mangers and aid donors is not to ignore the opportunities to mitigate climate change just because fossil fuels are out of favour but to look to the long term benefit that can be achieved by supporting the Power Authorities with funding for heat to power projects.

ElectraTherm

The use of ElectraTherm ORC Solutions for the conversion of waste heat resources into high value electricity is only limited

By The Bounds of Your Imagination

Thank you!

ElectraTherm www.electratherm.com

ElectraTherm

David Knight Business Development Analyst Tel: +61 419 439 148 <u>Email: dknight@electratherm.com</u>

***** ElectraTherm