Sizing the Array/Battery and Inverter in an Off Grid System – (PWM and MPPT Controller)

INTRODUCTION

 This ½ day session looks at battery sizing, inverter sizing and array sizing in a dc bus system (PWM and MPPT controller) Off grid PV System

 The design of an off-grid PV power system should meet the required energy demand and maximum power demands of the end-user.

DC BUS SYSTEMS

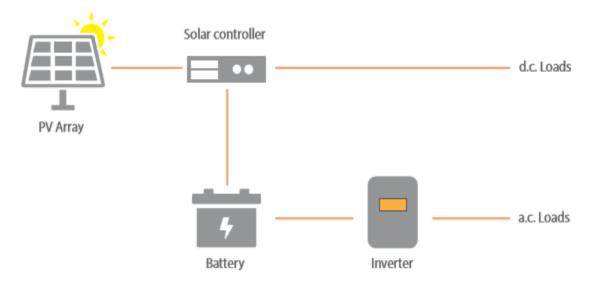


Figure 2: dc bus system

STEPS WHEN DESIGNING AN OFF GRID

The steps in designing a system include:

- Carrying out a site visit and determining the limitations for installing a system and examining the location where the equipment will be installed
- 2. Determining the energy needs of the end-user
- Determining the voltage and capacity of the battery bank.

STEPS WHEN DESIGNING AN OFF GRID

- Determining the size of any inverter connected to systems supplying dc power.
- 5. Determining the size of the array.
- 6. Determining the size of the solar controller
- 7. Providing a quotation to the end-user.

SIZING THE INVERTER AND BATTERIES

Comes from Load Assessment Form

SPECIFYING AN INVERTER

Examine the loads which could be running at any one time

• The inverter needs to be able to run these loads

simultaneously

EXAMPLE DC LOAD ASSESSMENT

Table 1 dc load (energy) Assessment

(1)	(2)	(3)	(4a)	(5a)	(4b)	(5b)	(6)	Comments
Appliance	Number	Power	Rest of year		Humid season		Contribution to maximum	
			Usage Time	Energy	Usage Time	Energy	demand	
			Н	Wh	h	Wh	w	
Light	6	5	6	180	8	240	30	
Daily Load energy-dc loads (Wh) (DC 7a)				180	(DC 7b)	240		
Maximum dc (DC 8)	demand (W)				1		30	

EXAMPLE - AC LOADS

(1)	(2)	(3)	(4a)	(5a)	(4b)	(5b)	(6)	(7)	(8)	(9a)	(9b)	
Applianc e	No	Power	Rest of Year		Humid season			Contributi on to max		Contribution to surge demand		
			Usage Time h	Energ y Wh	Usage Time h	Energy Wh	Powe r Facto	demand VA	Surg e Facto r	Potenti al VA	Design VA	Comme nts
							r					
TV	1	25	4	100	4	100	0.8	31	1	31	31	
Fan	1	60	0	0	6	360	0.9	67	1	67	67	
Refrigerat or	1	100	14	1400	14	1400	0.8	125	4	500	500	Duty cycle of 0.58 included
Daily Load	Ene	rgy A.C	(AC10	1500	(AC10b)	1860						
Loads (Wh)												
Maximum ac demand (VA) (AC11) 223 598												
Surge demand (VA) (AC12)								598				

POSSIBLE INVERTER SIZE

- From the load (energy) assessment, the selected inverter must be capable of supplying 223VA continuously with a surge capability of 598VA for a short period of time.
- Allow 10% over-sizing.
- Consider future demand.

BATTERY SIZING

SUMMARY - BATTERY SIZING 1

- Carry out load assessment for dc and ac loads
- Find E tot = dc loads + (ac loads/inverter efficiency)
- Select an appropriate system voltage
- Choose appropriate battery technology and Maximum DOD
- Select number of days of autonomy (3 5 days)

SUMMARY – BATTERY SIZING 2

Use following equation to find battery capacity in Ah

$$C_{x} = \frac{E_{tot}}{V_{d.c.}} \times \frac{T_{aut}}{DOD_{max}}$$

- Derate battery capacity for operating temperature
- Consult the manufacturer's data sheets for maximum demand and surge capabilities (Compare C₅ and C₁ currents with maximum demand and surge currents for lead acid batteries)

SUMMARY – BATTERY SIZING 3

- Verify maximum continuous discharge current
- Ensure appropriate charge current
- Select the battery accounting for charge/discharge rates
- Find number in series and parallel BUT KEEP PARALLEL AT A MINIMUM NUMBER

AVERAGE DAILY ENERGY USAGE

$$E_{tot} = E_{dc} + \frac{E_{ac}}{\eta_{inv}}$$

 E_{tot} = total designed daily energy demand from the d.c. bus in Watt-hrs

 E_{dc} = design daily energy d.c. load in Watt-hrs

 E_{ac} = design daily energy a.c.. load in Watt-hrs

 η_{inv} = average energy efficiency of the inverter when supplying the design d.c. load

AVERAGE DAILY ENERGY USAGE- HUMID SEASON

Say

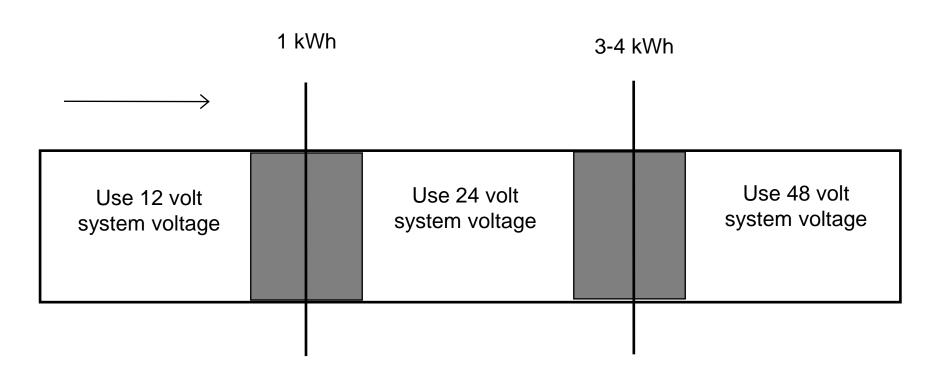
 $E_{dc} = 240 \text{ Wh}$

 $E_{ac} = 1860 \text{ Wh}$

 $\eta_{inv} = 90\% (0.9)$

Therefore

 E_{tot} = 240 + (1860/0.9)= 2307Wh or 2.3kWh



DETERMINATION OF SYSTEM VOLTAGE GUIDE ONLY

$$C_x = E_{tot} \times T_{aut}$$

 $V_{dc} \times DOD_{max}$

$$C_x = Daily Energy Requirement (Ah) X T_{aut}

$$DOD_{max}$$$$

USING 24V

• Daily Ah requirement = 2307/24 = 96Ah

Information required:

- Daily energy demand in Ah = 96Ah
- Number of days of autonomy = 5 days
- Maximum Depth of Discharge = 70%

To calculate the required battery capacity, multiply daily energy demand in Ah by the number of days of autonomy:

96Ah x 5 days = 480Ah for lead acid batteries and divided by maximum depth of discharge

 $C_x = 480/0.7 = 686 \text{ Ah}$

 Battery Capacity = (5 x 2307 Wh)/0.7 = 16479 Wh for lithium ion batteries (assuming 70% usable with safety margin)

BATTERY DISCHARGE RATE

An easy approach is just say C₁₀ or C₂₀

The actual rate should be based on the load profile of the actual system

Please refer to guideline for doing that.

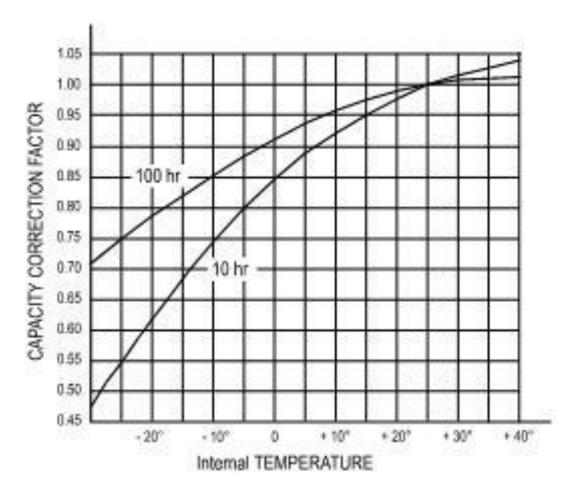
Assume for the worked example we select C₁₀

SELECTING BATTERY

Battery Model	Battery Capacities in AH								
	C ₁	C ₅	C ₁₀	C ₂₀	C ₅₀	C ₁₀₀			
Α	130	180	220	255	328	400			
В	160	222	268	310	400	468			
С	360	403	481	551	698	840			
D	400	485	578	661	840	998			
E	450	618	734	838	1056	1260			

TEMPERATURE CORRECTION FACTOR

- Batteries have less capacity in temperatures colder then the test temperature (either 20°C (Europe Standards or 25°C)Australian Standards).
- So battery capacity might need adjusting



TEMPERATURE
CORRECTION
FACTOR- LEAD
ACID BATTERIES

 Assume lowest 24 hour average temperature is 20°C then the correction factor would be 0.99 at the 100 hr rate and 0.975 at the 20 hr rate.

EXAMPLE

- Assuming that at the 10 hour rate the correction factor is about 0.97;
- Actual Required Capacity is 686/0.97 = 707 Amp-hrs at
 C 10

So select Battery model 'E' with a C₁₀ of 734 Amp-hrs

MAXIMUM OR SURGE DEMAND

- Typical maximum continuous discharge rate is given as the 5 hour rating (C₅)
- The surge rating as the 1 hour rating (C₁)
- Sometimes data is hard to get

CONSULT WITH MANUFACTURER

EXAMPLE

- Lets assume we have inverter with 250VA continuous rating (and customer does use that and 1000VA surge
- Typical maximum continuous discharge rate is given as the 5 hour rating (C₅)
- \bullet =30W/24V + (250VA/0.9)/24V= 12.82A
- $C_5 = 5 \times 12.82 = 64.1 \text{Ah}$

EXAMPLE Cont

- The surge rating as the 1 hour rating (C₁)
- =30W/24V + (1000VA/(0.9)/24V) = 48A
- $C_1 = 1 \times 48 = 48Ah$

 Battery E easily meets both of the above requirements.

MAXIMUM CHARGE CURRENT

 Generally accepted that the maximum charge current for a battery is the C₁₀ discharge current—sometimes stated as

10% of the C₁₀ rating

- To calculate the maximum charging current, multiply the C₁₀ rating of battery by 0.1
- So for selected battery $C_{10} = 734$ therefore maximum charge current = 73A

SERIES AND PARALLEL BATTERIES

- The number of batteries in series is determined by the system voltage divided by the voltage of the selected battery
- The number of batteries in parallel is determined by the overall capacity divided by the capacity of the selected battery (must be a whole number, in principle, always round up)

BATTERIES REQUIRED

Information Required

- Chosen battery capacity at required rate = 734Ah at C₁₀
- Chosen battery voltage = 2V
- Required battery capacity = 707Ah at C₁₀
- Required battery voltage = 24V

BATTERIES REQUIRED Cont

To work out the number of batteries in series, divide the required battery voltage by the voltage of the chosen battery

$$24/2 = 12$$

To work out the number of parallel strings, divide the required battery capacity by the capacity of the chosen battery

707/734 = 0.96 (round up to 1)

ALLOWING FOR FUTURE LOAD GROWTH

- If the loads are expected to change in the future (i.e. New TV, more lights), then this should be considered when choosing the battery capacity
- It is better to have a larger battery from the beginning, as you can't just add more battery capacity later on

SIZING ARRAY WITH STANDARD CONTROLLER

EXAMPLE DC LOAD ASSESSMENT

Table 1 dc load (energy) Assessment

(1)	(2)	(3)	(4a)	(5a)	(4b)	(5b)	(6)	Comments	
Appliance		D	Rest of ye	Rest of year		eason	Contribution to maximum		
	Number	Power	Usage Time	Energy	Usage Time	Energy	demand		
		w	н	Wh	h	Wh	w		
Light	6	5	6	180	8	240	30		
Daily Load en (DC 7a)	lergy-dc load	s (Wh)		180	(DC 7b)	240			
Maximum dc demand (W) (DC 8)							30		

EXAMPLE – AC LOADS

(1)	(2)	(3)	(4a)	(5a)	(4b)	(5b)	(6)	(7)	(8)	(9a)	(9b)									
		Power	Rest o	f Year	Hot Seaso	on		Contributi on to max		Contribu										
Applianc e	No	Power	Usage Time	Energ	Usage Time	Energy	Powe r	demand	Surg e Facto	Potenti al	Design	Comme								
		W	W	W	W	W	W	W	W	W	h	Wh	h	Wh	Facto r	VA	r	VA	VA	nts
TV	1	25	4	100	4	100	0.8	31	1	31	31									
Fan	1	60	0	0	6	360	0.9	67	1	67	67									
Refrigerat or	1	100	14	1400	14	1400	0.8	125	4	500	500	Duty cycle of 0.58 included								
Daily Load		ergy A.C	(AC10 a)	1500	(AC10b)	1860														
Maximum ac demand (VA) (AC11) 223 598																				
Surge demand (VA) (AC12)										598										

AVERAGE DAILY ENERGY USAGE

Humid Season

$$E_{dc} = 240 \text{ Wh}$$
 $E_{ac} = 1860 \text{ Wh}$ $\eta_{inv} = 90\%$ (0.9)

Therefore

$$E_{tot} = 240 + (1860/0.9) = 2307Wh$$

Rest of Year

$$E_{dc}$$
 = 180 Wh E_{ac} = 1500 Wh η_{inv} = 90% (0.9)

Therefore

$$E_{tot} = 180 + (1500/0.9) = 1847Wh$$

DETERMINATION OF WORST MONTH (USING LATITUDE TILT)

	Jan	Feb	Mar	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec
Irradiation (kWh/ m²)	6.69	5.9	5.78	5.33	4.76	4.42	4.66	5.22	5.82	6.26	6.46	7.01
Load (kWh)	2.3	2.3	2.3	1.8	1.8	1.8	1.8	1.8	1.8	2.3	2.3	2.3
Ratio	2.91	2.57	2.51	2.96	2.64	2.46	2.59	2.90	3.23	2.72	2.81	3.05

CALCULATING AH

Information Required:

Daily energy required 1847Wh

System Voltage 24V

To determine the daily energy requirement divide the total daily energy in Wh by the system voltage 1847÷24=77Ah

Example

AH REQUIRED FROM ARRAY

 Since the batteries are not 100% efficient, array needs to produce more than is required

 Battery 'round trip' efficiency depends upon coulombic efficiency of charging and discharging – typically 0.8-0.9

AMP-HOURS REQUIRED FROM ARRAY

Information provided:

Daily Load in Ah = 77 Ah

Battery 'round trip' efficiency = 90% (0.9)

To calculate the Amp-hours required from the array you need to divide the daily load in Ah by the battery 'round trip' efficiency

$$77 \div 0.9 = 85.6$$
Ah

OVERSIZE FACTOR

- Without a back-up genset the PV array should be oversized to ensure that the battery can be recharged from maximum depth of discharge in an acceptable period while still meeting the daily load requirements.
- The PPA/SEIAPI guideline 20%

OVERSIZE FACTOR

Therefore the array output required is:

Array Output Required = 1.2 x 85.6 = 102.7 Ah

DERATING OF PV ARRAY

- Manufacturers Tolerance
 - Typically 5%
- Dirt
 - 0% to 10%
- Temperature
 - PV Cell's generally operate at about 25°C above the ambient temperature

Effective cell temperature

= Ambient temperature + 25°C

DETERMINING SIZE OF ARRAY REQUIRED

ELECTRICAL PERFORMANCE

Electrical parameters at Standard Test Conditions (STC)												
Module name			YGE 145	YGE 140	YGE 135	YGE 130	YGE 125					
Module type				YLxxxP-17b (xxx=Pmax)								
Power output	P _{max}	w	145	140	135	130	125					
Power output tolerances	ΔP _{max}	%	+/- 5									
Module efficiency	η _m	%	14.5	14.0	13.5	13.0	12.5					
Voltage at P _{max}	V _{mpp}	V	18.15	18.01	17.77	17.51	17.34					
Current at P _{max}	I _{mpp}	Α	7.99	7.77	7.60	7.42	7.21					
Open-circuit voltage	V _{oc}	V	22.46	22.28	22.00	21.67	21.46					
Short-circuit current	l _{sc}	Α	8.47	8.30	8.12	8.00	7.74					

STC: $1000W/m^2$ irradiance, 25° C cell temperature, AM1.5g spectrum according to EN 60904-3. Average relative efficiency reduction of 5% at $200W/m^2$ according to EN 60904-1.

Electrical parameters at Nominal Operating Cell Temperature (NOCT)											
Power output	P _{max}	W	117.46	113.41	109.36	105.31	101.26				
Voltage at P _{max}	V _{mpp}	V	16.73	16.59	16.38	16.14	15.98				
Current at P	I _{mpp}	Α	6.40	6.26	6.12	5.96	5.78				
Open-circuit voltage	V _{oc}	V	20.44	20.28	20.02	19.72	19.53				
Short-circuit current	l _{sc}	Α	6.78	6.64	6.50	6.40	6.19				

PPA

DETERMINING SIZE OF ARRAY REQUIRED

Information required
Manufacturer's tolerance = 5% (0.95)

Dirt derating factor = 5% (0.95)

If module current at 14V and 50°C and 55 °C cannot be supplied by the manufacturer- then use the halfway point between the lsc and Imp

i.e.
$$(7.99 + 8.47)/2 = 8.23A$$

DETERMINING SIZE OF ARRAY REQUIRED

First we derate the module's current by the manufacturers tolerance

 $8.23 \times 0.95 = 7.82A$

Then we derate the current for losses from dirt

$$7.82 \times 0.95 = 7.43A$$

DETERMINING SIZE OF ARRAY -SERIES

You then need to work out how many modules in each string

Information required:

System voltage = 24 V

Nominal module voltage = 12 V

To get the number of modules per string, you divide the system voltage by the nominal module voltage:

$$24 \div 12 = 2$$

DETERMINING SIZE OF ARRAY – PARALLEL FIRST USING THE PSH AS PROVIDED

Lastly, you need to find out how many parallel strings to get the required Ah out of your PV array

Information required

Module derated output current = 7.43 A

Lowest monthly Peak Sun Hours at site = 4.42

Daily load in Ah = 102.7 Ah

DETERMINING SIZE OF ARRAY – PARALLEL FIRST USING THE PSH AS PROVIDED

To get the daily output of each module, multiply the current (A) by the peak sun hours (h)

$$7.43 \times 4.42 = 32.8 \text{Ah}$$

To get the number of parallel strings required, divide the daily load in Ah by the daily output of a module

$$102.7 \div 32.8 = 3.13$$

DO YOU ROUND UP OR DOWN = DISCUSS

DETERMINING SIZE OF ARRAY- 3 STRINGS

Month	PSH at latitude tilt	Daily energy from modules (Ah)	Excess energy from modules
January	6.69	149.1	53.0
February	5.9	131.5	35.4
March	5.78	128.8	32.7
April	5.33	118.8	36.6
May	4.76	106.1	23.9
June	4.42	98.5	16.3
July	4.66	103.9	21.7
August	5.22	116.4	34.2
September	5.82	129.7	47.5
October	6.26	139.5	43.4
November	6.46	144.0	47.9
December	7.01	156.3	60.2

DETERMINING SIZE OF ARRAY- 4 STRINGS

Month	Peak sun hours at 17° tilt	Average daily energy from modules (Ah)	Excess energy from Modules (Ah)		
January	6.69	198.8	102.7		
February	5.9	175.3	79.2		
March	5.78	171.8	75.7		
April	5.33	158.4	76.2		
May	4.76	141.5	59.3		
June	4.42	131.4	49.2		
July	4.66	138.5	56.3		
August	5.22	155.1	72.9		
September	5.82	173.0	90.8		
October	6.26	186.0	89.9		
November	6.46	192.0	95.9		
December	7.01	208.3	112.2		

NUMBER OF STRINGS - FORMULA

The number of strings in parallel required is:

$$N_p = \frac{E_{\text{tot}} \times f_o}{V_{\text{dc}} \times I_{\text{mod}} \times H_{\text{tilt}} \times \eta_{\text{coul}}}$$

where

E_{tot} = total daily design energy demand from the dc busbar in watthrs

 f_0 = oversupply co-efficient, dimensionless

 η_{coul} = coulombic efficiency of the battery, dimensionless

PWM CONTROLLER SIZING

- These should be sized so that they are capable of carrying 125% of the array short circuit current but if controllers are current limited this can be ignored.
- Most PWM are current limited
- However, even if controller is current limited if there is no 125% oversize then controller is working harder and it might shorten the lifetime of the controller

PWM CONTROLLER SIZING 2

- Based on short circuit current
- The controllers shall withstand the open circuit voltage of the array
- The oversize by 25% because currents greater than short circuit have been recorded.
- Remember to allow for future growth

CONTROLLER SIZING FOR EXAMPLE

• Isc = 8.47A

• 3 strings in Parallel = $3 \times 8.47 = 25.41A$

• 125% Oversize= 1.25 x 25.41A= 31.7A

 Voltage must be suitable for 24V nominal (about 22.46 x 2= 44.92VOC)

SIZING ARRAY WITH MPPT CONTROLLER

AVERAGE DAILY ENERGY USAGE

Humid Season

$$E_{dc} = 240 \text{ Wh}$$
 $E_{ac} = 1860 \text{ Wh}$ $\eta_{inv} = 90\%$ (0.9)

Therefore

$$E_{tot} = 240 + (1860/0.9) = 2307 \text{Wh}$$

Rest of Year

$$E_{dc} = 180 \text{ Wh}$$
 $E_{ac} = 1500 \text{ Wh}$ $\eta_{inv} = 90\%$ (0.9)

Therefore

$$E_{tot} = 180 + (1500/0.9) = 1847$$
Wh

DETERMINATION OF WORST MONTH (USING LATITUDE TILT)

	Jan	Feb	Mar	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec
Irradiation (kWh/ m²)	6.69	5.9	5.78	5.33	4.76	4.42	4.66	5.22	5.82	6.26	6.46	7.01
Load (kWh)	2.3	2.3	2.3	1.8	1.8	1.8	1.8	1.8	1.8	2.3	2.3	2.3
Ratio	2.91	2.57	2.51	2.96	2.64	2.46	2.59	2.90	3.23	2.72	2.81	3.05

SYSTEM LOSSES (SUB-SYSTEM EFFICIENCY)

- When working with Wh, then the system losses include
 - the MPPT controller (regulator) efficiency (typically 90% to 95%.
 - the cable efficiency (cable losses)(less than 5%); and
 - the Wh efficiency of the battery (typically 70% to 80%).
- In all cases the actual design (cable losses) and manufacturers' (MPPT and Battery) data must be used.

DETERMINING ENERGY REQUIRED FROM ARRAY

Information required

Cable loss- (transmission efficiency)

MPPT efficiency of 95% and

battery Wh efficiency of 80%.

Sub system effeciency

Energy required from array

Example

3% (0.97)

95%(0.95)

80% (0.80)

 $0.97 \times 0.95 \times 0.80$ = 0.737

1847÷0.737 =2505Wh

OVERSIZE FACTOR

Example

20%

Assume

Based on SEIAPI guideline

2505 x 1.2 =

= 3006Wh

DERATING OF MODULE

As with the PWM controller the PV module will be de-rated due to:

- Manufacturer's Tolerance:
- Dirt:
- Temperature

DETERMINING SIZE OF ARRAY REQUIRED WHEN USING MAXIMUM POWER POINT TRACKER 1

$$P_{\text{mod}} = P_{\text{stc}} \times f_{\text{man}} \times f_{\text{temp}} \times f_{\text{dirt}}$$

where

 P_{mod} = de-rated output power of the module, in Watts

 P_{stc} = rated output power of the module under standard test conditions, in Watts

 f_{temp} = temperature de-rating factor, dimensionless

 f_{man} = de-rating factor for manufacturing tolerance, dimensionless

 f_{dirt} = de-rating factor for dirt, dimensionless

DETERMINING SIZE OF ARRAY REQUIRED WHEN USING MAXIMUM POWER POINT TRACKER

$$f_{temp} = 1 - (\gamma \times (T_{cell.eff} - T_{stc}))$$

where

= temperature de-rating factor, dimensionless

= power temperature co-efficient per degree Celsius

= average daily effective cell temperature, in degrees Celsius T_{cell.ef}

= cell temperature at standard test conditions, degrees Celsius.

Effective cell temperature is

$$T_{cell-eff} = T_{a.day} + 25^0$$

EXAMPLE

Example

Assume the ambient temperature

Therefore the effective cell temperature is

30°C

 $30^{\circ}C + 25^{\circ}C = 55^{\circ}C$

 $55^{\circ}C - 25^{\circ}C = 30^{\circ}C$

Temperature above STC

Temperature Coefficient -0.45%/°C.

% Loss due to Temperature

 $30 \times -0.45\% = -13.5\%$

Derating Factor of 0.865

DERATING OF MODULE

Information required

Manufacturer's tolerance factor

Dirt derating factor

Temperature derating factor

First, we derate the module's power by the manufacturers tolerance

Then we derate the power for losses from dirt

Last we derate because of temperature losses

Example

95% (0.95)

95% (0.95)

86.5%(0.865)

145 x0.95 =137.75W

137.75x0.95 =130.86W

130.86x0.865 =113.2W

DETERMINING SIZE OF ARRAY

Need to find out how modules to get the required Wh out of your PV array

Example

Information required

Module derated output power 113.19W

Lowest monthly Peak Sun Hours at site 4.42

Daily load in Wh required from array

3006Wh

To get the daily output of each module, multiply the derated power (W) by the peak sun hours (h)

113.19 x 4.42=

500Wh

To get the number of modules required, divide the daily load in wh by the daily output of a module

3006÷500 = 6.01

DETERMINING SIZE OF ARRAY REQUIRED WHEN USING MAXIMUM POWER POINT TRACKER - FORMULA

Number of modules in the array

$$N = \frac{E_{\text{tot}} \times f_{\text{o}}}{P_{\text{mod}} \times H_{\text{tilt}} \times \eta_{\text{pvss}}}$$

Where

E_{tot} = total daily design energy demand from the dc busbar in Watt-hrs

 f_0 = oversupply co-efficient, dimensionless

 η_{pvss} = efficiency of the PV sub-system, dimensionless

=
$$\eta_{ren\text{-}batt}$$
 X η_{reg} X η_{batt}

HOW MANY IN SERIES AND HOW MANY IN PARALLEL?

Different MPPT allow different string voltages and therefore a different number of modules in the string.

Number of parallel strings is determined by:

Number in parallel = Total number of modules / Number of modules in string

SELECTING AN MPPT

Information required

Number of modules in array

Rating of array

Output Voltage is 24V dc, the output current from 6 solar modules would be no greater than

However due to effect of temperature on the power and the fact that as the battery is charged voltage increases—so actaul output current will be a lot less than this value

Example

6

6 x 145=870Wp

24V

((870)/24) = 36.25A

MATCHING THE PV ARRAY TO THE MAXIMUM VOLTAGE SPECIFICATIONS OF THE MPPT

For matching array to MPPT

Nominal Batter Voltage	y Recommended min number of cells in the array string of modules
12V	60
24V	96
48V	168

SmartSolar Charge Controller	MPPT 75/10	MPPT 75/15	MPPT 100/15	MPPT 100/20	
Battery voltage	12/24V Auto Select				
Rated charge current	10A	15A	15A	20A	
Nominal PV power, 12V 1a,b)	145W	220W	220W	290W	
Nominal PV power, 24V 1a,b)	290W	440W	440W	580W	
Max. PV short circuit current 2)	13A	15A	15A	20A	
Automatic load disconnect	Ye	20A			
Maximum PV open circuit voltage	75	5V	100V		

BlueSolar Charge Controller	MPPT 150/35					
Battery voltage	12 / 24 / 48V Auto Select (software tool needed to select 36V)					
Rated charge current	35A					
Nominal PV power 1a, b)	12V: 500W / 24V: 1000W / 36V: 1500W / 48V: 2000W					
Max. PV short circuit current 2)	40A					
Maximum PV open circuit voltage	150V absolute maximum coldest conditions 145V start-up and operating maximum					
Maximum efficiency	98%					
Self-consumption	12V: 20 mA 24V: 15 mA 48V: 10mA					
Charge voltage 'absorption'	Default setting: 14,4 / 28,8 / 43,2 / 57,6V (adjustable)					
Charge voltage 'float'	Default setting: 13,8 / 27,6 / 41,4 / 55,2V (adjustable)					

MATCHING THE PV ARRAY TO THE MAXIMUM VOLTAGE SPECIFICATIONS OF THE MPPT

- It is important that the output voltage of the string is matched to the operating voltages of the MPPT and that the maximum voltage of the MPPT is never reached.
- The output voltage of a module is affected by cell temperature changes in a similar way to the output power.
- The manufacturers will provide a *voltage temperature* coefficient. It is generally specified in V/°C (or mV/°C) but it can also be expressed as a %.

MATCHING THE PV ARRAY TO THE MAXIMUM VOLTAGE SPECIFICATIONS OF THE MPPT

 To ensure that the Voc of the array does not reach the maximum allowable voltage of the MPPT the minimum day time temperatures for that specific site are required.

DETERMINING SIZE OF ARRAY REQUIRED

ELECTRICAL PERFORMANCE

Electrical parameters at Standard Test Conditions (STC)							
Module name			YGE 145	YGE 140	YGE 135	YGE 130	YGE 125
Module type			YLxxxP-17b (xxx=Pmax)				
Power output	P _{max}	w	145	140	135	130	125
Power output tolerances	ΔP _{max}	%	+/- 5				
Module efficiency	η _m	%	14.5	14.0	13.5	13.0	12.5
Voltage at P _{max}	V _{mpp}	V	18.15	18.01	17.77	17.51	17.34
Current at P _{max}	I _{mpp}	Α	7.99	7.77	7.60	7.42	7.21
Open-circuit voltage	V _{oc}	V	22.46	22.28	22.00	21.67	21.46
Short-circuit current	I _{sc}	Α	8.47	8.30	8.12	8.00	7.74

STC: 1000W/m² irradiance, 25°C cell temperature, AM1.5g spectrum according to EN 60904-3. Average relative efficiency reduction of 5% at 200W/m² according to EN 60904-1.

Electrical parameters at Nominal Operating Cell Temperature (NOCT)							
Power output	P _{max}	W	117.46	113.41	109.36	105.31	101.26
Voltage at P _{max}	V _{mpp}	V	16.73	16.59	16.38	16.14	15.98
Current at P _{max}	I _{mpp}	Α	6.40	6.26	6.12	5.96	5.78
Open-circuit voltage	V _{oc}	V	20.44	20.28	20.02	19.72	19.53
Short-circuit current	I _{sc}	Α	6.78	6.64	6.50	6.40	6.19

THERMAL CHARACTERISTICS

Nominal operating cell temperature	NOCT	°C	46 +/- 2
Temperature coefficient of P _{max}	γ	%/°C	-0.45
Temperature coefficient of V _∞	β _{Voc}	%/°C	-0.33
Temperature coefficient of I _{sc}	α _{lsc}	%/°C	0.06

DETERMINING MAX VOC OF MODULE

Assume

Minimum Temperature

STC

Temperature Coefficient

Voc

Temperature coefficient in V

Increase in Voc due to temperature

Example

20°C

25°C

-0.33%/°C.

22.46

 $(-0.33/100)*22.46 = -0.074V/^{\circ}C$

 $(20^{\circ}\text{C} - 25^{\circ}\text{C}) \times -0.074\text{V} = 0.37$

Voc at 20°C

22.46 + 0.37

MAX VOLTAGE OF MPPT

Assume

Max Voltage

Safety Margin

Maximum Voltage of MPPT

Example

150V

5%

 0.95×150 = 142.5 V

MAX NUMBER OF MODULES IN STRING

Assume

Max Module Voltage 22.83V

Max Allowable MPPT Voltage 142.5

Maximum Number of modules in string

Round down to:

Minimum Number 3 (24V system)

Number required 6

 $142.5 \div 22.83 = 6.2$

Example

HOW MANY?

- With the 6 modules we could therefore have one string of 6 BUT that would make the Voc of array being 6 x 22.83V = 137V
- That is Low Voltage and therefore battery would be treated as Low Voltage
- Recommend to have two strings of 3 modules. This will keep the array as Extra Low Voltage

