

GE Transportation Leader in Clean Island Power Solutions

June 2019

Confidential. Not to be copied, distributed, or reproduced without prior approval.

We are **GE** Transportation. **Powering the World.**

Fact Sheet

Stationary Power

V228 and V250 engines and gensets for stationary power generation

GE Transportation a Wabtec company

OVERVIEW

OVERVIEW

- **GE MDC engines and gensets** available with EPA Tier 4, IMO Tier III
- **GE MDC Engines** Driving the lowest life cycle costs and greatest fuel efficiency to customers
- **GE MDC Engines** Transferring powerful engine technology to the marine environment
- Bringing new possibilities to the most challenging conditions and environments

- Both V228 and V250 engines can be offered for 50 and 60 Hz applications.
- V228 stationary engine offers continuous power from 1961 to 2905 bkW and from 2353 to 3486 bkW for limited time running power. V228 engine is available in 12- and 16- cylinder models.
- V250 stationary engine offers continuous power from 2999 to 4442 bkW and from 3544 to 5250 bkW for emergency standby power. V250 engine is available in 12- and 16-cylinder models.
- Fuel optimized, world bank and EPA Tier 2 compliant emissions standards available.

- Narrow footprint allows ease of maintenance and packaging advantage.
- Advanced EC2+ Controller & Electronic Fuel Injection (EFI) optimizes the combustion to improve fuel efficiency.
- No deration on extreme weather conditions up to 50°C & 300m.
- Capable of operating in desert conditions with cyclonic or paper-type air filtration.
- Long oil change intervals that range from 2000 to 4000 operating hrs. depending on duty cycle.
- Impressive durability with no planned major overhauls for up to 40,000 hours.*
- World-wide service network.

GE Transportation a Wabtec company **OVERVIEW**

GE Transportation (Engine) Genset Power Ratings based on ISO 8528-1: 2005

Engine Model		Engine (bkW)				Engine (bhp)			
Speed (RPM)	Elec. Frequency (Hz)	Continuous Power (bkW)	Prime Power (bkW)	Limited Time Running Power (bkW)	Emergency Standby Power (bkW)	Continuous Power (bhp)	Prime Power (bhp)	Limited Time Running Power (bhp)	Emergency Standby Power (bhp)
16V250									
1000	50	4442	4846	NA	5250	5957	6498	NA	7040
900	60	3995	4358		4721	5357	5844		6331
12V250									
1000	50	3330	3633	NA	3936	4466	4872	NA	5278
900	60	2999	3271		3544	4021	4386		4752
16V228									
1000	50	2905	3196	3486	N1/A	3896	4286	4675	N/A
900	60	2614	2876	3137	N/A	3506	3857	4207	
12V228									
1000	50	2179	2397	2614	N/A	2922	3214	3506	NI/A
900	60	1961	2157	2353		2630	2893	3156	N/A

GE Transportation a Wabtec company

GET Commitment to Power

- GEVO introduced 2005, based on EPA Tier 4 locomotive engine
- GE invested **\$400M** to develop a EPA T4 / EU Tier III Engine with No After Treatment

Plant Owners

- Meet EPA Tier 4 / European Tier III
- High **Reliable** Engines
- Best in Class Fuel Efficiency
- Industry leading life cycle
 costs
- Up to 60,000 hours between overhauls (no top end overhaul)

Plant Builders

Best Solution

- **No space consuming** "SCR, DEF tanks, and associated support systems" (dosing cabinet, air lines, etc.)
- Emission Compliant / Plant
 Repower with minimal impact
 on vessel design
- Easy Start up lowers commissioning costs.

GE Transportation a Wabtec company

GET's invested in a non-aftertreatment solution to lower emissions

GET's Investment in Emissions

Core technology to achieve EPA Tier 4 / IMO Tier III emissions without SCR

GE committed to Marine Solutions

Competition focused on Oil & Gas and Locomotive EGR

Oil & Gas Locomotive CAT 3512 US EPA Tier 4 MTU 4000 US EPA Tier 4

• EMD 1010 US EPA Tier 4 CAT C175 EU IIIb

Best Solution

Competitors are focused on leveraging EGR engines in O&G gensets and loco applications vs. Marine Solutions

GE MS T4 Engine Vs. HS with SCR

Best Solution

High speed engine with SCR requires a lot of additional maintenance

Best Solution

Best Solution

EGR Design

Fuel Consumption

- EGR has Impact on the Fuel consumption 🕇
- Common Rail Fuel system
- Increased Cylinder Pressure

Fuel consumption improved than T2 engine

×

_ Maintenance

- No Changes on Engine Maintenance sch.
- EGR Cleaning procedure is very simple

GE Transportation a Wabtec company

These failure modes will not cause an automatic engine shutdown!

Confidential. Not to be copied, distributed, or reproduced without prior approval.

Fail Safe Design

Loss of Control

4

- EGR (control valve open and backflow valve closed)
- The engine can run full power

Non- default Valve position

- Nominal EGR
- None to limited performance impact

RJE/CPUC, Micronesia PRIME POWER CHUUK Power Station 2 x GE12V228SDA

BOKUK/SONALGAZ, Algeria BLACKSTART / EMERGENCY Sonelgaz. Mega Deal (Biskra & Jijel CCPP) 8 x GE16V250SDA

RJE GLOBAL/SIRIUS RESOURCES (Now Independence Group), Western Australia CONTINUOUS POWER Independence Group's Nova nickel and copper mine 5 x GE12V250SDA

References

TEXAS POWER ASSOCIATES/ AMERICAN SAMOA POWER AUTHORITY, American Samoa CONTINUOUS POWER

Satala Power Replacement Project 7 x GE16V250SDA

AMIMER SPA, Algeria PRIME & STANDBY POWER

Various Projects 33 x 12V228SDA, 26 x 16V228SDA, 9 x 16V250SDA, 24 x 8V228SDA

SPP, VARIOUS CUSTOMERS, Iraq BLACK START Various Projects GE16V250SDA & GE16V228SDA

GE Transportation a Wabtec company

References

- Diesel Electric Power Plant (Example)
- Power Requirement ~12MWe
- Tender was open to HIGH SPEED and Medium SPEED
- Replacing HIGH SPEED (Tier 0)

- Fuel Efficient (Saving more than 12%)
- Reduced Overhauls and out of Service
- Annual Savings ~ \$1 Million

References

- Majority of the weight coming from Urea Tank
- Vessel Design should accommodate additional 97t at least o
- Weight distribution / Management

Based on MS Gensets

• Urea Solution demand double Space at least

• GE solution save \$100K at least without adding Urea Logistic / Management

Based on Diesel = 0.60 US\$/l, AdBlue = 0.70 US\$/l Note: Consumption for Urea Tank Heating Not Included

2400 – Quantity of engines that can be built in one year **70**

440,000 – Square Foot of State of Art Manufacturing

22,000 – Minimum Total of Installed base of engines

150,000,000 - Total hours of in service operations

50 – Total years of experience with Medium Speed

8,500 – Total Number of Electronic Engines in service

16,150,000 Hours of Tier 4 Engine Platform experience

700,000 – GE Investment in R&D USD (IMO Tier 3 / EPA Tier 4)

72 – Average Cub/ Ft Space Savings with 8L250 T4 vs others

88.5 – Average Tons Savings with GET 8L250 T4 vs others

9.33 - Average Fuel and Urea Savings versus Competitors

60,000 – Max recommended hrs between overhauls

100,000 – Average USD Engine Savings per year per MW.

1500 – Approx. number Tier 4 type Engines in Operation.

Summaru

Patrick Webb, Director Americas <u>Patrick.webb3@ge.com</u> +1 251 222 0020