Cyclone Proof Model 300kW wind turbine

Our Company: KOMAI HALTEC INC.

Former Kornai Tekko Inc. Former Haltec Co. Ltd. 1883 Founded in Osaka by Komai 1922 Founded in Osaka by Harumoto Risaku Incorporated as Harumoto-gumi 1941 Establishment of Komai Tekko Sho Co. Ltd. 1943 1950 Opened Tokyo Office 1951 Changed name to Harumoto Tekko Sho 1961 Listed on the Osaka Stock Exchange Market (Komai Tekko Sho and Harumoto Gumi) 1962 Opened Tokyo-Matsudo Factory in Chiba 1968 Opened Hirakata factory 1969 Opened Osaka Sotojima Factory (now Osaka Factory)

1980 Opened Tokyo Main Office

1984 Listed on the Tokyo Stock Exchange Market 1989 Renamed as KOMAI TEKKO Inc. 1991 Moved Headquarter to Tokyo 1993 Opened Chiba Factory

1995 Opened Futtsu Factory in Chiba

2000 Listed on the Tokyo Stock Exchange 2001 Changed name to Haltec Co.Ltd

2006 Developed 300kW Wind Turbine and Installed Prototype

2010 Komai Tekko Inc. and Haltec Co. Ltd. merged and started operation as Komaihaltec Inc. Formerly Komai Tekko Inc. and Haltec Co. Ltd.

More than100 years of experience in manufacturing steel structures.

Bridge and Steel structure are main field of works

-

 Prototype 300kW wind turbine installed in 2006

Our Company: KOMAI HALTEC INC.

Steel Bridge Design, Fabrication and Installation Steel Structure Fabrication Wind Turbine and Sky Solar System

Prepared by Komai haltec Inc.

3 0 0 k W Wind Turbine : KWT300

COMPACT DESIGN

•Blade:16m •Nacelle:18t •Tower Height:41.5m (4 blocks: each block 10t) •Transportable w/ 10t trucks •Erection with 60t cranes

•

Micro-grid Friendly

Flexible output control

- Minimize battery storage
- Customized control system

Soft cut-in and cut-out

<u>ROBUST</u>

- Highest Turbulence Intensity
 - Durable on complex terrain
 - Survival wind speed
 - 70m/s for standard model
 - 91.26m/s for typhoon resistant model

Prepared by Komai naitec inc.

Performance and IEC Class

Cut in wind speed	3m/s
Rated wind speed	11.5 m/s (instant) 15 m/s (ten min average)
Cut out wind speed	25 m/s

IEC Wind Turbine Class

Class II for average wind speed Class I and above (typhoon model) for maximum wind speed Class A + for Turbulence intensity

IEC WTGS Class		Ι	П	Ш	S (KWT300)
Vref(m/s)		50	42.5	37.5	50
Vave(m/s)		10	8.5	7.5	8.5
Iref Turbulance Intensity	A	0.16	0.16	0.16	
	В	0.14	0.14	0.14	0.18
	С	0.12	0.12	0.12	

Output control of Wind Turbine for Micro Grid

Output control to mitigate the impact of grid frequency and voltage

Reactive Power Control

Control range(Power Factor) : $\cos\varphi=-0.86\sim0.86(\varphi=\pm30^{\circ})$. Fixed value control:Use the fixed power factor Variables control:Input value from the outside system (4-20mA)

Output control with blade pitch

Range : 10% ~100% of 300kW By either

- Fixed value
- Input (Maximum value)
- Variables : Input from outside
- (4-20mA), Time control etc.

Output control of Wind Turbine for Micro grid

- Soft cut-in and Soft cut-out
- Limit the Output increasing speed by pitch control
- to harmonize with diesel engines

Cyclone Proof Model

Prepared by Komai haltec Inc.

Key Features of "Type T"

Active Yaw Control keeps Rotor Down-wind Position

Wind Direction

Item	Measures taken
Blades	Increased strength
Pitch System	Increased strength
Gear Box	Increased maximum bearable load
Tower	Increased strength

Prepared by Komai haltec Inc.

Wind Load Reduced

Emergency DG to secure power for yaw control during power outage

KWT300 Typhoon Model

	Standard Model	Typhoon Model		
Cut-in Wind Speed	3.0m/s			
Cut-out Wind Speed	25.0m/s			
Maximum Wind Speed Vref (ten minutes average)	50m/s (111.8mph)	58.5m/s (130.9mph)		
Survival Wind Speed, Ve50 (3 seconds average)	70m/s (156.6mph)	91.26m/s (204.1mph)		
Control during Tunhoon	Koon rotor up wind position	Keep rotor down-wind position		
		Active yaw control		
In case of loss of grid power for auxiliary supply	No yaw control Designed to withstand the wind load from any direction	Supply power for yaw control with emergency power supply to keep the rotor position		
Survival wind of wind censors	70m/s	100m/s		
Nacelle cover survival wind	70m/s	91.26m/s		

Flow of Typhoon Control

*If emergency DG is out of order when a typhoon approaches, and the power supply from the grid stops, the nacelle yaw will be controlled passively to keep downwind with half brake.

Prepared by Komai haltec Inc.

Past Tropical Cyclone Experience

		(ten minu	tes average)			
Cyclone	Season	wind speed (mph)	wind speed (m/s)	Pressure	Affected area	Recorded max wind speed
Winston	2015–16	145	64.8	915 hPa (27.02 inHg)	Fiji	84.5m/s
Yolanda /Haiyan	2013	145	64.8	895hPa	Philippines	195mph 87.17m/s
Maemi	2003		55	910hPa	Miyakojima, Japan	86.6m/s
Tropical Cy Scale	vclone	Category	10min average (km/h)	e wind speed (m/s)	Instant (3 sec (km/h)	c) wind speed (m/s)
		1	62 - 88	17.2 - 24.7	90 - 125	25.0 - 34.7
	A	2	- 117	- 32.8	- 164	- 45.8
		3	- 157	- 43.9	- 224	- 62.5
		4	- 198	- 55.0	- 279	- 77.8
	ALC: NO	5	>198	> 55.0	> 280	> 77.8

KWT300 vs. Tilt-down type WT

	Komaihaltec's KWT300	Tilt-down type wind turbine
Transportation and Installation	60 ton crane required	25 ton crane Container transportation
Maintenance	 Climb inside the tower No need to lower the nacelle Less downtime due to maintenance 	 Need to lower the system More time consuming for maintenance
In case of typhoon	 Keep operation till the wind speed reaches 25 m/s Safe against 70m/s wind as it is Immediately Back to normal operation after typhoon Produce significant amount of energy 	 Need to lower before the wind speed reaches 10 m/s Not much energy production

Wind Speed analysis during Typhoon

Example of Gain / Loss during Typhoon

	KWT300	Tilt-down type WT
Down time (case of May 2011 typhoon in Yap)	20 hours. Only when wind speed exceeds 25 m/s	5 days Half day for tiling down Stop from one or half day before wind becomes 10m/s, until one or half day after wind goes below 10m/s.
Energy generation	4 days generation for 3 units = 33,600kWh	NO Generation while on the ground.
Economic gain	33,600kW x 0.5 USD/kWh (diesel generation cost) x 3 times/year x 20 years life time = 1 MUSD	NO gain

Romblon Island Project (Philippines)

- Typhoon resistant system pilot case
- Partner: Romblon Electric Cooperatives
- Demonstration of surplus energy absorption by portable battery pack for EV (Honda Motors)
- To be commissioned in Dec 2018.

Other Projects (non-typhoon model)

Maintenance of Wind Turbines

- Scheduled maintenance is required for optimal and safe operation.
- Supplier's engineers or specialized maintenance servicer will conduct the maintenance, or trained local engineers take care of the normal maintenance

Scheduled	Usually every half year.	4-1-1-4
maintenance	Refill, replacement of grease,	
	oils, filters. Tightening bolts etc.	
	NO NEED for cranes.	
	Internal ladder to reach nacelle.	PE
Remote monitoring	Remotely check the operation st errors, and operation logs.	atus,
Electrical inspection	Electrical inspection on Step-up transformer once a month design law. (in case of Japan)	nated by

Remote Monitoring for O&M Support

- Output
- Wind speed
- Rotation
- Voltage, Current
- Frequency
- Vibration
- Temperature

Komaihaltec checks the status and logs to provide technical support for $O&M \rightarrow$ Facilitate local maintenance

株式会社 駒井ハルテック KOMAIHALTEC Inc.