

Preparing for 100 % Renewable Energy

Pacific Power Association Conference 2017

Who we are

GBE owned by people of Tasmanian

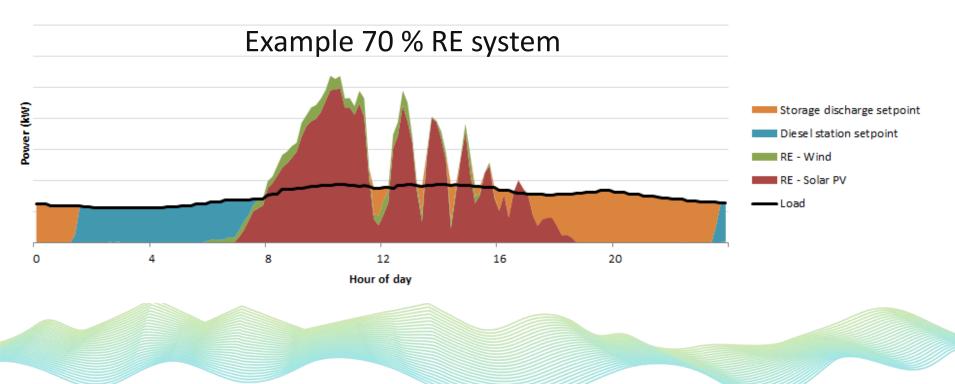
Turned 100 in 2014

Australia's largest Clean Energy producer

- >2,200 MW of hydro generation
 - 30 Powerstations, 59 major dams
- Construction and part owner of large windfarms
- Owner, Operator, Retailer of Hybrid Power Systems
- Advice, design and project implementation in Pacific

Our Brands

What does 100 % RE contribution look like?



All energy must come from renewables

Typically achieve 40 % to 70 % RE, then rest with biofuels

Optimal system very situation dependent on:

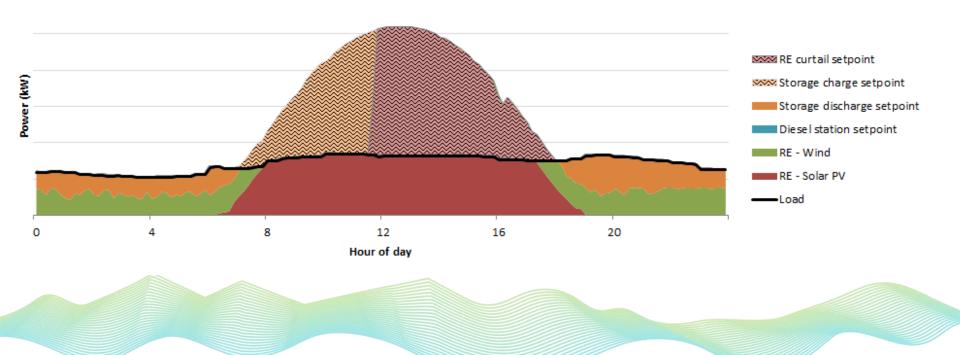
- Wind and solar mix
- Access to hydro and biofuels
- Commercial realities

Dealing with excess RE energy

Excess energy goes to batteries

Absorb at power station

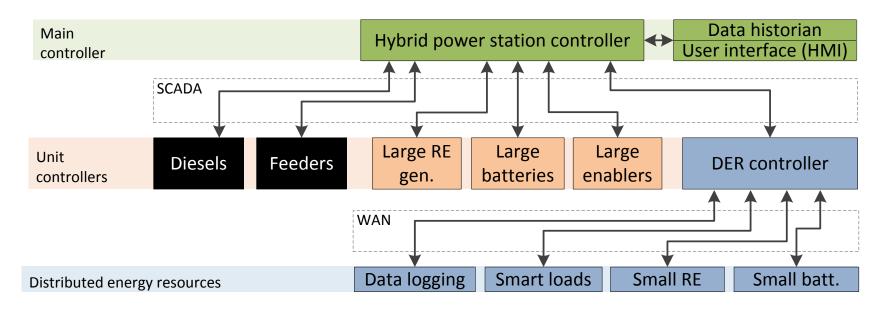
Curtail at source


- What if they are full or faulty?
- How much did you pay for this energy?
- \rightarrow Will feeders overload?

 \rightarrow

 \rightarrow

 \rightarrow


- How fast is the control path?
- \rightarrow What are the commercial solutions?

Specifying a control system

- Less control coordination = more enabler hardware
- Quality control system cost << RE generator cost

- Fast and reliable SCADA to link unit controllers
- Wide Area Network (e.g. 4G) to control & monitor DER

Enablers

Supply & demand must balance at millisecond resolution, during:

- Normal operation \rightarrow RE and load ramping
- Contingencies \rightarrow RE, feeder and enabler trips
- Short circuit \rightarrow Protection scheme operation

Enablers must replicate ALL diesel generator functions for 100 % RE to be possible

Туре	Examples	Strength	Weakness	
Rotating generators	Diesel UPS	InertiaOperates grid protection schemeSimple	• Losses	
Power electronics	Battery	Configurable grid supportLarge energy storage	Poor 'inertia' during short circuitZero diesel not proven for large grids	
Controllable loads	Resistor	Easily sink excess energyLow cost hardware	Surplus energy must be cheap	

Energy storage

Why?	\rightarrow	Value add to RE spill, be clear on role
Roles?	\rightarrow	Grid control, replace some diesel functions
	\rightarrow	Energy shifting
	\rightarrow	Power electronics distributed grid support
Where?	\rightarrow	Some at power station, rest at RE generation
Life?	\rightarrow	Calendar life often short, aim to use all of cycle life
	\rightarrow	Roles change at different % RE with new enablers
From who?	\rightarrow	Know what you need, have realistic expectations
	\rightarrow	New technology procurement is DIFFERENT
	\rightarrow	Buy something that already works. Test it.
0&M?	\rightarrow	Need expertise to resolve issues
	\rightarrow	What happens at cell EOL?

The path to 100% RE

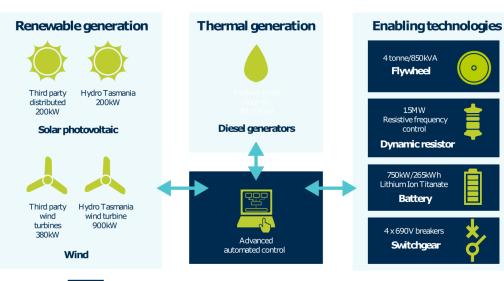
Large grids are a few steps back on the same journey

Good solutions are mindful of:

- Limit uncontrolled generation
- Minimise transitional equipment \rightarrow obsolete
- Connection standards embrace technology capabilities
- Avoid complex / unproven solutions → high O&M
- Highly targeted incentives only
- New revenue structures to support LCOE solutions
- Balance of private/public ownership and central/de-central config.
- Customer options: embedded networks, batteries, smart loads, EVs
- Community and customer impacts

Ultimately want happy customers that stay on the grid!

King Island Renewable Energy Integration Project



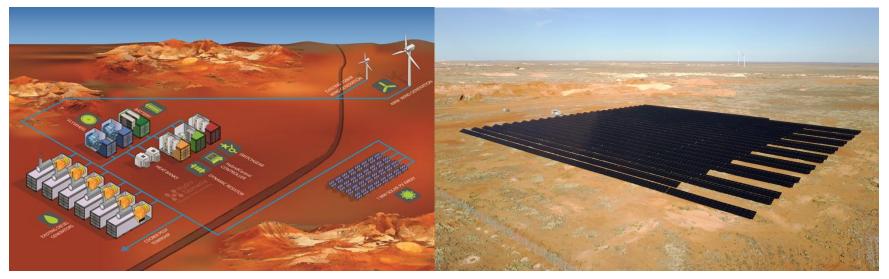
- HT EPC
- 100% RE Penetration
- 65% RE Contribution
- Increased System Reliability
- Sub 1 second DSM aggregation
- Happy Operators!
- Successful Customer Engagement
- Test Bed

2.45 MW Wind, 400 kW PV 3 MW / 1.6 MWh BESS 3 MW Dynamic Resistor 2 x 1 MVA D-UPS (Flywheel) 100% Biodiesel Trial DSM Smart Grid Hybrid Controller

Flinders Island Hybrid Energy Hub

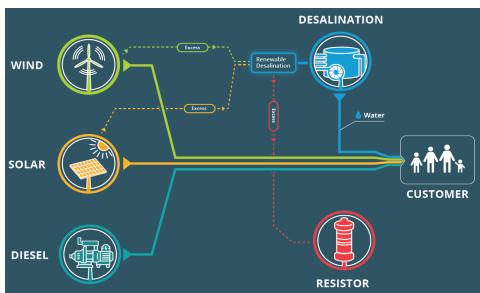
Scalable modular systems capable of low cost rapid deployment

Australian Government Australian Renewable Energy Agency


HT FPC •

- **Modular Solution** •
- Test off site •
- **Strong Community Engagement**
- Whole of system Hybrid Control • Upgrade
- **Undergoing Final Commissioning** •
- **100% RE Penetration**
- 60% RE Contribution

Coober Pedy Renewable Hybrid Project



Australian Government Australian Renewable Energy Agency

- HT Design, Owners Eng, Supply of
 - D-UPS, Dynamic Resistor, LV-HV Switchgear, Hybrid Control
- 70% RE Contribution target
- 100% Penetration
- Hybrid Control 'talks to' Existing Diesel Control
- Multiple Party Interfacing Physical and Control

Rottnest Island Water Renewable Energy Nexus

1

Hydro

Tasmania

- HT EPC
- Finalisation activities underway
- 45% RE Contribution
- Integrates Desal as Energy Storage
- Replace Hybrid Control & Diesel Control
- Extensive Training
- Operator Remote Interface
- Education App

Australian Government

Key points

- Planning is critical, 'roadmaps' are a great tool
- Consider the Whole of system, not just individual pieces
- Invest in the right equipment that works, proven, robust, simple
- Training and support must be part of the scope, projects don't finish at commissioning.
- Implement in sensible steps, with aligned procurement method
- Build backbone to simplify private investment
- Set expectation of Private Sector
- Engage stakeholders early and often.

IPS Connect

Thank You

Pacific Power Association Conference 2017

Further Info: Hybrid Energy Solutions

Ray Massie Ray.massie@hydro.com.au David Butler david.butler@hydro.com.au